
NamesMenu

1 781
329 4700�

Editor’s Notes 2

A Reader Notes 2

How to Save Power in Battery Applications
Using the Power-Down Mode in an ADC 3

Advanced Digital Post-Processing Techniques Enhance
Performance in Time-Interleaved ADC Systems 5

Dynamic Memory Allocation Optimizes
Integration of Blackfin® Processor Software 10

Product Introductions 15

Authors 15I
N

T

H
I

S

I
S

S
U

E

Volume 37, Number 3, 2003

A forum for the exchange of circuits, systems, and software for real-world signal processing

http://www.analog.com

2 Analog Dialogue Volume 37 Number 3ISSN 0161-3626 ©Analog Devices, Inc. 2003

Editor’s Notes
RF IS EVERYWHERE—BEWARE!
It’s high time for a reminder of a theme
that cannot be repeated too often: the
need for designers of precision low level
dc and low frequency equipment to be
alert to the adverse effects of ever-
increasing ambient high frequency
radio-frequency energy, from MHz to
GHz, on their measurements. In this
world, conductors form antennas,
converting electromagnetic waves into voltages and currents—
both normal-mode and common-mode. Shielding and filtering
are fine, but how many op amp data sheets ordinarily specify CMR
at radio frequencies?

We have published warnings. For example, in “Ask the
Applications Engineer—14,” there is a discussion of high
frequency signal contamination,1 and in a later issue, further
illumination of the subject by a reader.2 Walt Jung’s recent book,
Op Amp Applications, contains substantive discussions—including
a useful set of references—in a 30-page section headed “EMI/RFI
considerations.”3 You can find an earlier version of this section
online in the Hardware Design chapter of the online seminar book,
Practical Analog Design Techniques, edited by Walt Kester.4 Also,
in 1996 (Volume 30, No. 2), we published “A Bibliography on
EMC/EMI/ESD,” by Daryl Gerke, P.E., and William Kimmel,
P.E.,5 describing a variety of useful texts on these topics.

In Analog Dialogue online, 35-4, August 2001, we published an
item by a reader, Herman R. Gelbach, P.E., “A Reader Notes,”
stressing the problem of common-mode RFI. This note has
never appeared in print, but it deserves preservation (and our
readers need the information), so it is revived below in (relatively)
indestructible print.

–Dan Sheingold, Editor

A READER NOTES:
[From Analog Dialogue 35-4, August 2001. www.analog.com/library/
analogDialogue/archives/35-04/reader.html]

High-Frequency-Caused Errors in Millivolt-Measurement Systems

By Herman R. Gelbach, P.E. ret. (hrgelbach@juno.com)

[Editor’s Note: Herman never tires of reminding us of the effects of EMI
in precision data systems. Faithful readers may recall the adventure that
he and our James Bryant shared, summarized in an article that was
included in our “Ask The Applications Engineer” collection.1 In the
present communication, he takes us to task with respect to a couple of
recent Analog Dialogue articles, for not once again reminding designers
who use precision ICs that they must deal with both normal-mode and
common-mode threats to instrumentation-system accuracy. Herman is
a Life Fellow of the Instrument Society of America (ISA) and is a design
consultant to Scanivalve Co. If you wish to see any of his writings on this
subject, get in touch with him at the above email address.]

I am saddened that the many copies of my ISA paper,6 High-
Frequency Common Mode, The Contaminator of Signals, which have
been sent to ADI are apparently gathering dust. Scott Wayne
states “all Analog Devices instrumentation amplifiers are fully
specified for both dc and low-frequency ac common mode
rejection.”7 He has completely missed mentioning the source
of high-frequency induced errors, unequal slewing of the input

device to the impressed signal. I am led to assume that he has
never checked for high-frequency common-mode voltages, but
a couple of years ago at a seminar that I conducted for the local
IES chapter, I checked!

I found in an after-working-hours office environment, on the end
of a 50-foot water-pipe-grounded input lead a couple of hundred
millivolts of high-frequency CM trash. This will give significant
offset (slewing) errors in any unprotected instrumentation
amplifier that I have ever tested—and that’s dozens of different
commercial instrument designs. See Figure 3 of my paper for a
real-life clean laboratory environment. It shows about 400 mV
p-p of high-frequency trash. Most important, no grounding
scheme—except a continuous sheet of copper with all system
components, including signal wiring and sensors intimately in
contact with it—will get rid of this! Maxwell’s and Heaviside’s
equations still are with us. The only practical solution is to
prevent the unwanted high-frequency signals from reaching
the point of rectification.

A similar comment would apply to Albert O’Grady’s article.8
High-frequency CM is ever present in measurement systems,
especially in these days of computers and RF-coupled telephones.
Even the design of the remote-sensing transducer excitation-
supply error amplifier must consider this error source! On page
37, he talks of parasitic thermocouples and how to eliminate the
effect. Unfortunately, such offsets are likely to be insignificant
relative to offsets caused by RF induced in the system’s wiring.
The application of the suggested process only contributes more
unknown errors. Gold-copper and copper-copper thermocouples
have an extremely low output, so the source of the errant emf is
not thermoelectric if normal care is used in the system design.

A test that I had run many years ago tested the variation in voltage
at an amplifier input from a loop consisting of signal-conditioner
board-edge connector, AMP patchboard connectors, balance pit
patch board Deutsch connectors, in-model Winchester SMRE
connectors, and was terminated in the two wires being connected
to the two terminals of a Constantan strain gage glued to the model
structure. Copper-Constantan thermocouples have a very high
output; therefore an output might be expected if the temperature
of the couples was not exactly matched. The total loop length was
perhaps 200 ft.

The loop voltage was observed with an Astrodata Nanovoltmeter,
easily capable of 100-nanovolt stability over the test time. The
observed loop-voltage variation over the 8 -hour shift was
3 microvolts, p-p. This included wind-tunnel warmup and
several Mach series from 0.3 to 0.95 Mach. Balance pit and model
temperatures, with the several connectors, varied to 130F. In
another test of a few Dynamics, Inc., amplifiers, they were found
to repeat offsets within 1/8 microvolt RTI over a week’s time using
the normal system calibration relays and resistance dividers. These
are raw data without any modification. The amplifiers have PMI/ADI
MAT01 matched monolithic dual-transistor input pairs. Because
of the results of the two cited tests, I am completely unimpressed
with discussions of correcting for thermal offsets in wiring.

If any of your readers (or colleagues) are interested in my
comments, and can’t find a copy of the above-mentioned ISA
paper, or if they have an interest in a writeup that I made for
Scanivalve Co.,9 “What do I do with this third wire?” please
email me. The latter article should be required reading for any
one interested in the subject of “grounding” and shielding of
sensors, and their interconnection to the receiving device and
its “ground.”

(continued on page 14)

 3

How to Save Power in Battery
Applications Using the Power-Down
Mode in an ADC
By Mercedes Casamayor
[mercedes.casamayor@analog.com]
Claire Croke [claire.croke@analog.com]
Size and power consumption are two critical features in portable
battery-powered applications. Otherwise acceptable components
can be designed out of portable systems based on deficiencies in
these two features alone. Everybody desires smaller, more compact
mobile phones, MP3 players, PDAs, and digital cameras—with
increased time between battery charges or replacement. For
semiconductor manufacturers, this translates into a requirement
for lower power ICs with high performance and the same—or even
extra—features in ever smaller packages.

In portable battery-powered applications, battery life is a critical
concern to the system designer. Battery discharge curves differ,
depending on the type of battery and the current drain. For
example, Figure 1 shows the typical discharge curves for a
Lithium/MnO2 (primary) cell with three typical current loads.
They show that the higher the current it must supply, the shorter
the battery’s life. Since even small amounts of current shorten the
battery’s life, minimizing the current drawn quiescently by the
system components when not operating—or whenever possible
during operation—can extend battery life.

3.5

3.0

2.5

V
O

LT
A

G
E

 (
V

)

2.0

1.5

1.0
0 100 200

SERVICE HOURS

LITHIUM/MnO2 DISCHARGE CURVE

300

0.5mA1mA3mA

400

Figure 1. Typical discharge curves.

Nowadays, almost every analog/digital converter (ADC) sold
into the battery-powered device market provides a power-down
mode as a standard feature. The technique used to place the
ADC into the power-down state—and its effectiveness—differ
from part to part.

Some ADCs have a dedicated shut-down pin to shift the device
into power-down mode. The weakness of this approach is that an
extra pin, which results in increased pin count for the ADC, can
increase the package size. Other ADCs, like the AD7887, require
a write to an on-board control register to produce a power-down
state. This is generally the case with multichannel ADCs, where
an internal register is used for channel selection as well as mode
selection. This on-board register also means an extra DATA IN
serial interface pin.

In order to cut down on pin count, some recent ADCs use the
standard interface lines to implement power-down modes; an
example is the 12-bit, 1-MSPS AD7476A, available in the tiny
6-pin SC70 package.

The AD7476A’s 3-wire read-only serial interface not only controls
the conversion process and accesses the conversion result from the
ADC—it is also used to establish the device’s different operating
modes. The mode of operation is selected by controlling the
state of CS (conversion start) during a conversion. This has the
advantage that the signals required to change modes are standard
serial interface signals.

The serial interface consists of the CS, SCLK, and SDATA
lines. A normal conversion requires sixteen serial clock pulses
for completion. The CS signal is used to initiate the conversion
and to frame the sixteen serial clocks. After the conversion has
been initiated, the time at which CS is pulled high will determine
if the AD7476A will enter power-down mode—or, if already in a
power-down mode, whether or not the AD7476A will return to
normal operation. Changing the mode of operation can easily be
done with a standard 8- or 16-pulse SCLK burst from a micro-
controller—or with a framing signal of any length from a DSP.

Figure 2 shows the timing diagram during a normal conversion,
and Figure 3 shows how the power-down mode can be entered
by controlling the CS signal. This mode of operation is designed
to provide flexible power management options and to minimize
power dissipation for different application requirements.

To reduce power consumption and maintain battery life, the
AD7476A should be placed into its low power state between
conversions or after a burst of several conversions.

CS

SCLK

1 16

SDATA 4 LEADING ZEROS + CONVERSION RESULT

Figure 2. Serial interface signals in a normal conversion.

INVALID DATA
THREE-STATE

CS

SCLK

SDATA

1 2 10 16

Figure 3. Using the serial interface signals to enter power-down mode.

www.analog.com/library/analogdialogue/archives/37-09/ADC_powerdown.htmlAnalog Dialogue Volume 37 Number 3

4

More about the AD7476A
The AD7476A is a 12-bit successive approximation (SAR-type)
ADC, operating on a 2.35-V to 5.25-V supply and capable of
throughput rates of up to 1 MSPS. The AD7476A combines
CMOS technology and advanced design techniques to achieve
low power-dissipation at high throughput rates.

The AD7476A’s average power consumption during the cycle time
is determined by the percentage of time it spends in a full power
state (operational), as compared to the interval spent in a low power
state (power down). The greater the time spent in power-down,
the lower the average power consumption.

To achieve the lowest power dissipation with the AD7476A,
the conversion should be run as quickly as possible. Since the
conversion time is determined by the SCLK frequency, the faster
the SCLK frequency, the shorter the conversion time. Thus, the
device can remain in the power-down mode for a longer interval
and will dissipate maximum power for a shorter time.

Figure 4 shows the average power consumption by the AD7476A
for different SCLK frequencies with a fixed throughput rate of
100 kSPS. The ADC is put in the power-down mode after the
conversion is complete, and is powered up by means of a dummy
conversion. As the plot shows, the faster the clock frequency, the
lower the average power consumption.

20

P
O

W
E

R
 (

m
W

)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18
SCLK FREQUENCY (MHz)

20

FSAMPLE = 100kSPS

VDD = 5V

VDD = 3V

Figure 4. AD7476A power consumption for different
serial clock frequencies.

Figure 5 shows that for a fixed SCLK frequency of 20 MHz, when
operating the ADC at low throughput rates, the average power
consumed by the ADC is very low. However, as the throughput
rate increases, the average power consumption increases, because
the ADC remains in a power-down state for a shorter period of
time compared to the time in the operating state. The other plot
shows the average power consumed by the ADC when there is no
power-down mode implemented between conversions. Together
they show that—while at lower throughput rates significant power
savings can be achieved by placing the ADC into a power-down
state between conversions—increasingly diminished power savings
accrue as the conversion rate increases. For example, at 300 kSPS,
the difference between the two cases is less than 0.5 mW.

A further step in the different power-down modes implemented
through standard serial interface signals is the automatic power-
down mode. Following the trend of very low power ADCs for
portable battery-powered applications, Analog Devices has recently

made available the AD7466, a micropower, 12-bit SAR-type ADC
housed in a 6-lead SOT-23 package. It can be operated from 1.6 V
to 3.6 V and is capable of throughput rates of up to 200 kSPS.

THE PART IS POWERED UP ALL THE TIME
10

P
O

W
E

R
 (

m
W

)

0.01

0.1

1

0 50 100 150 200 250 300
THROUGHPUT (kSPS)

350

VDD = 3V,
SCLK = 20MHz

PLACING THE PART INTO POWER-DOWN
MODE BETWEEN CONVERSIONS

Figure 5. AD7476A power consumption comparison.

The AD7466 powers up prior to conversion and returns to power-
down mode when the conversion is complete; this eliminates the
need for dummy conversions. In the same way as for the AD7476A,
the AD7466’s conversion time is determined by SCLK, allowing
the conversion time to be reduced by increasing the serial clock
speed, thus providing the same kind of power saving.

Figure 6 shows the AD7466’s power consumption for different
throughput rates, serial clock frequencies, and supplies. The
current consumption in power-down mode is typically 8 nA.
The AD7466 consumes 0.9 mW max when operating at 3 V, and
0.3 mW max for 1.8 V operation at 100 kSPS.

P
O

W
E

R
 (

m
W

)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200
THROUGHPUT (kSPS)

250

VDD = 3V, SCLK = 2.4MHz

VDD = 3V, SCLK = 3.4MHz

VDD = 1.8V, SCLK = 3.4MHz

VDD = 1.8V, SCLK = 2.4MHz

Figure 6. AD7466 power consumption vs. throughput
rate for different SCLK and supply voltages.

We have shown that faster SCLK frequencies and longer power-
down modes greatly reduce the average power consumed by the
ADC. These power savings, combined with the space-saving
6-lead 2 mm  2.1 mm SC70 surface-mount package, make
the AD7476A an ideal candidate for portable battery-powered
applications and a very compact alternative to other solutions. And
for extremely low-power-budget applications powered at 3.6 V,
the AD7466 is the ideal solution. b

Analog Dialogue Volume 37 Number 3

 5

Advanced Digital Post-Processing
Techniques Enhance Performance
in Time-Interleaved ADC Systems
By Mark Looney [mark.looney@analog.com]

INTRODUCTION
Time interleaving of multiple analog-to-digital converters by
multiplexing the outputs of (for example) a pair of converters
at a doubled sampling rate is by now a mature concept—first
introduced by Black and Hodges in 1980.1, 2 While designing a
7-bit, 4-MHz A/D converter (ADC), they determined that a time-
interleaved solution would require less die area than a comparable
2n flash converter design. This new concept proved of great value
in their design, but saving space was not its only benefit. Time
interleaving of ADCs offers a conceptually simple method for
multiplying the sample rate of existing high-performing ADCs,
such as the 14-bit, 105-MSPS AD6645 and the 12-bit, 210-MSPS
AD9430. In many different applications, this concept has been
leveraged to benefit systems that require very high sample rate
analog-to-digital conversion.

While the speed and resolution of standard ADC products have
advanced well beyond 4 MHz and 7 bits, time-interleaved ADC
systems (for good reasons) have not advanced far beyond 8-bit
resolution. Nevertheless, at 8-bit performance levels, this concept
has been widely adopted in the test and measurement industry,
particularly for wideband digital oscilloscopes. That it continues to
make an impact in this market is evidenced by the 20-GSPS, 8-bit
ADC that was recently developed by Agilent Labs3 and adopted by
the Agilent Technologies Infiniium™ oscilloscope family.4 Indeed,
time-interleaved ADC systems thrive at the 8-bit level, but they
continue to fall short in applications that require the combination
of high resolution, wide bandwidth, and solid dynamic range.

The primary limiting factor in time-interleaved ADC systems
at 12- and 14-bit levels is the requirement that the channels be
matched. An 8-bit system that provides a dynamic range of 50 dB
can tolerate a gain mismatch of 0.25% and a clock-skew error of
5 ps. This level of accuracy can be achieved by traditional methods,
such as matching physical channel layouts, using common ADC
reference voltages, prescreening devices, and active analog
trimming, but at higher resolutions the requirements are much
tighter. Until now devices employing more innovative matching
techniques have not been commercially available.

This article will outline in detail the matching requirements for
12- and 14-bit time-interleaved ADC systems, discuss the idea
of advanced digital post-processing techniques as an enabling
technology, and introduce a device employing the most promising
solution to date, Advanced Filter Bank (AFB™), from V Corp
Technologies, Inc.5, 6

Time Interleaving Process Overview
Time interleaving of ADC systems employs the concept of running
m ADCs at a sample rate that is 1/m of the overall system sample
rate. Each channel is clocked at a phase that enables the system as
a whole to sample at equally spaced increments of time, creating
the seamless image of a single A/D converter sampling at full
speed. Figure 1 illustrates the block- and timing diagrams of a
typical four-channel, time-interleaved ADC system. Each of the
four ADC channels runs at one-fourth the system’s sample rate,
spaced at 90 intervals. The final output data stream is created by

interleaving all of the individual channel data outputs in the proper
sequence (e.g., 1, 2, 3, 4, 1, 2, etc.). In a two-converter example,
both ADC channels are clocked at one-half of the overall system’s
sample rate, and they are 180 out of phase with one another.

1 = 0

2 = 90

3 = 180

4 = 270

DATA
OUT

MASTER
CLOCK

ANALOG
INPUT

1

2
3 4 1

1 2 3 4 1

CHANNEL 1

1 = 0

ENCODE

AIN DATA 1

CHANNEL 2

2 = 90

ENCODE

AIN DATA 2

CHANNEL 3

3 = 180

ENCODE

AIN DATA 3

CHANNEL 4

4 = 270

ENCODE

AIN DATA 4

ANALOG
INPUT

Figure 1. Four-channel time-interleaved ADC system.

For simplicity, this article focuses primarily on two-converter
systems, but four-converter systems are discussed when required
to articulate key performance differences. Most of the block
diagrams, mathematical relationships, and solutions will highlight
the two-channel configuration.

Design Challenge of Time Interleaving
As mentioned, channel-to-channel matching has a direct impact
on the dynamic range performance of a time-interleaved ADC
system. Mismatches between the ADC channels result in dynamic
range degradation that—in an FFT plot—show up as spurious
frequency components called image spurs and offset spurs. The
image spur(s) associated with time-interleaved ADC systems are
a direct result of gain- and phase mismatches between the ADC
channels. The gain- and phase errors produce error functions
that are orthogonal to one another. Both contribute to the image-
spur energy at the same frequency location(s). The offset spur is
generated by offset differences between the ADC channels. Unlike
the image spur(s), the offset spurs are not dependent on the input
signal. For a given offset mismatch, the offset spur(s) will always be
at the same level. Extensive studies of the behavior of these spurs
have resulted in several mathematical methods for characterizing
the relationship between channel matching errors and dynamic
range performance.7, 8

While these methods are thorough and very useful, the “error
voltage” approach used here provides a simple method for
understanding the relationship without requiring a deep study
of complex mathematical derivations. This approach is based on
the same philosophy used in Analog Devices Application Note
AN-5019 to establish the relationship between aperture jitter and
signal-to-noise (SNR) degradation in ADCs. The error voltage is
defined as the difference between the “expected” sample voltage and
the “actual” sample voltage. These differences are a result of a large
subset of errors that fall into three basic categories: gain (Figure 2),
phase (Figure 3), and offset (Figure 4) mismatches.

www.analog.com/library/analogdialogue/archives/37-08/post_processing.htmlAnalog Dialogue Volume 37 Number 3

6

A
IN

 (
V

O
LT

S
)

AIN (IDEAL)

AIN (LOWGAIN)

ENCODE

VE

TIME

Figure 2. Voltage error due to gain mismatch.

TIME

ENCODE (IDEAL)

ENCODE (SKEWED)

VE

TE

AIN

A
IN

 (
V

O
LT

S
)

Figure 3. Voltage error due to encode/clock skew.

TIME

ENCODE

VE

AIN (OFFSET)

AIN (IDEAL)

A
IN

 (
V

O
LT

S
)

Figure 4. Voltage error due to offset mismatch.

In a two-converter interleaved system, the error voltages generated
by gain and phase mismatches result in an image spur that is located
at Nyquist minus the analog input frequency. The offset mismatch
generates an error voltage that results in an offset spur that is located
at Nyquist. Since the offset spur is located at the edge of the
Nyquist band, designers of two-channel systems can typically
plan their system frequency around it, and focus their efforts on
gain- and phase matching. Figure 5 displays a typical FFT plot
for a two-channel system.

FREQUENCY (MHz)
0 25 50 75 100 125 150 175

A
M

P
L

IT
U

D
E

 (
d

B
c)

0

–120

–100

–80

–60

–40

–20

200

Figure 5. Typical two-converter interleaved FFT plot.

In a four-converter interleaving system, there are three image
spurs and two offset spurs. The image spurs, generated by gain
and phase mismatches between the ADC channels, are located
at (1) Nyquist minus the analog input frequency and (2) one-half
Nyquist plus or minus the analog input frequency. The offset spurs
are located at Nyquist and at one-half of Nyquist (middle of the
band). Figure 6 displays a typical FFT plot of a four-converter
system, illustrating the locations of these five spurs.

FREQUENCY (MHz)
0 40 80 120 160 200 22020 60 100 140 180

A
M

P
L

IT
U

D
E

 (
d

B
c)

0

–100

–80

–60

–40

–20

–120
240

Figure 6. Typical four-converter interleaved FFT plot.

Once the error voltages from each of the three mismatch groups
are known, the following equations can be used to calculate the
image and offset spurs (ISgain, ISphase, IStotal, OSoffset) in a single-
tone, two-converter system:

IS IS
G

whereG gainerror ratio
V

V

gain dB gain
e

e
FSA

FSB

() log() log= × = × 





= = −

20 20
2

1

(1)

IS IS

where t radians

ana input frequency

t clock skewerror

phase dB phase
ep

ep a e

a

e

() log() log

()

= × = × 





= ×

=
=

20 20
2

θ

θ ω

ω

∆

∆
log

(2)

Analog Dialogue Volume 37 Number 3

 7

IS IS IStotal dB gain phase() log= × () + ()20

2 2

(3)

OS
Offset

TotalCodes

whereOffset channel to channeloffset codes

offset dB() log

()

= ×
×







= − −

20
2

(4)

As noted earlier, the gain- and phase errors generate error
functions that are orthogonal7, requiring a “root-sum-square”
combination of their individual contributions to the image spur.
Using these equations, an error budget can be developed to
determine what level of matching will be required to maintain a
given dynamic range requirement. For example, a 12-bit dynamic
range requirement of 74 dBc at an input frequency of 180 MHz
would require gain matching better than 0.02% and aperture delay
matching better than 300 fs! If the gain can be perfectly matched,
the aperture delay matching can be “relaxed” to approximately
350 fs. Figure 7 displays an example of a detailed “error budget
curve” for this 12-bit, 180-MHz example.

APERTURE DELAY TIME ERROR (ps)

2-CHANNEL INTERLEAVED ADC ERROR BUDGET

0 0.05
0

0.005

0.010

0.015

0.020

0.025

G
A

IN
 E

R
R

O
R

 (
%

F
S

)

0.030

0.035

0.040

0.10 0.15 0.20 0.25 0.30 0.35 0.40

FAILING REGION

PASSING REGION

IMAGE SPUR = 74dBc ANALOG INPUT
FREQUENCY = 180MHZ

Figure 7. Error budget: 12-bit, 2-channel, 180-MHz input.

Table I provides the matching requirements for several different
cases to illustrate the extreme precision required to make a classical
time-interleaved A/D conversion system work at 12- and 14-bit
resolutions over wide bandwidths.

Table I. Time-interleaved ADC matching requirements.
Performance Gain Aperture
Requirement SFDR Matching Matching
at 180 MHz (dBc) (%) (fs)
12 Bits 74 0.04 0
12 Bits 74 0 350
12 Bits 74 0.02 300
14 Bits 86 0.01 0
14 Bits 86 0 88
14 Bits 86 0.005 77

Traditional Approach to Wide-Bandwidth Time-Interleaved
ADC Systems
A traditional, 2-channel time-interleaving ADC system employs
the basic configuration displayed in Figure 8. The first level of
matching in traditional time-interleaving ADC systems is achieved
through reducing the physical and electrical differences between
the channels. For example, gain matching is typically controlled
by the use of common reference voltages and carefully matched
physical layouts. Phase matching is achieved by manually tuning

the electrical length of the clock (or analog input) paths and/or
through special trimming techniques that control an electrical
characteristic of the clock distribution circuit (rise/fall times, bias
levels, trigger level, etc.). The offset matching depends on the
offset performance of the individual ADCs.

ENCODE REF

CLOCK
CIRCUIT

AND
PHASE
TRIM

PRECISION
REFERENCE

AND
GAIN

ADJUSTMENT

MULTIPLEXER
2:1

DATA OUT
12-BIT
400MSPS

ENCODE
INPUTANALOG

FRONT-END
CIRCUIT

ANALOG
INPUT

0

180

DATA OUT "A"
12-BIT

200MSPS
AIN

ADC "A"

ENCODE REF

DATA OUT "B"
12-BIT

200MSPS
AIN

ADC "B"

Figure 8. Functional diagram of a traditional
time-interleaved ADC.

Many of these matching approaches are based on careful analog
design and trim techniques. While there has been an abundance
of excellent ideas to address these tough matching requirements,
many of them require additional circuits that add error sources
of their own—defeating the original purpose of achieving precise
gain and phase matching. An example of such an idea would be
setting the rise and fall times of the two different clock signals.
Any circuit that could provide this level of control would be
subjected to increased influence of power-supply voltage—and
temperature—on each channel’s phase behavior.

Advanced Digital Post Processing
The development of new digital signal processing techniques,
along with the advances in inexpensive, high-speed, configurable
digital hardware platforms (DSPs, FPGAs, CPLDs, ASICs, etc.),
has opened the way for breakthroughs in time-interleaving ADC
performance. Digital post-processing approaches have several
advantages over classical analog matching techniques. They are
flexible in their implementation and can be designed for precision
well beyond the ADC resolutions of interest. A conceptual view
of how digital signal processing techniques can impact time-
interleaved system architectures can be found in Figure 9. This
concept employs a set of digital calibration transfer functions that
process each ADC’s output data, creating a new set of “calibrated
outputs.” These digital calibration transfer functions can be
implemented using a variety of digital filter configurations (FIR,
IIR, etc.). They can be as simple as trimming the gain of one
channel or as complicated as trimming the gain, phase, and offset
of each channel over wide bandwidths and temperature ranges.

Wide bandwidth and temperature matching presents the greatest
opportunity—and challenge—for using digital post-processing
techniques to improve the performance of time-interleaving ADC
systems. The mathematical derivations required for designing the
digital calibration transfer functions for multiple ADC channels
over wide bandwidths and temperature ranges are extremely
complex and not readily available. However, a great deal of
academic work has been invested in this area, creating a number
of interesting solutions. One of these solutions, known as Advanced
Filter Bank (AFB), stands out in its ability to provide a platform
for a significant breakthrough.

Analog Dialogue Volume 37 Number 3

8

ANALOG
INPUT

X(f)

Yca(f, T) = X(f)  Ha(f,T)  Hca(f,T) = IDEAL OUTPUT A
Ycb(f, T) = X(f)  Hb(f,T)  Hcb(f,T) = IDEAL OUTPUT B

AIN

ENCODE

Ha(f, T) Hca(f, T) Yca(f, T)

ADC "A"

AIN

ENCODE

Hb(f, T) Hcb(f, T) Ycb(f, T)

ADC "B"

MISMATCHED
ADC

OUTPUTS

0

180

CLOCK
CIRCUIT

DIGITAL
CALIBRATION

TRANSFER
FUNCTIONS

CALIBRATED
OUTPUTS

Figure 9. Example of digital post-processing architecture.

Advanced Filter Bank (AFB)
AFB is one of the first commercially available digital post-
processing technologies to make a significant impact on the
performance of time-interleaving ADC systems. By providing
precise channel-to-channel gain, phase, and offset matching over
wide bandwidths and temperature ranges, AFB is well-positioned
to solidly establish time-interleaving ADC systems in the area
of high-speed, 12-/14-bit applications. Besides its matching
functions, AFB also provides phase linearization and gain-flatness
compensation for ADC systems. Figure 10 displays a basic block
diagram representation of a system employing AFB.

S
P

L
IT

T
E

R

CLOCK
CIRCUIT

CLOCK
INPUT

DECOMPOSITION
CONVERTER

ARRAY RECOMBINATION

MULTIRATE
DIGITAL
FILTERS

SIGNAL
OUTPUT

ADC R0 +

ADC R1

ADC RM–1

SIGNAL
INPUT

ADVANCED FILTER BANK ANALOG-TO-DIGITAL CONVERTER

Figure 10. AFB basic block diagram.

By using a unique multirate FIR filter structure, AFB can be easily
implemented into a convenient digital hardware platform, such as
an FPGA or CPLD. The FIR coefficients are calculated using a
patented method that involves starting with the equations seen in
Figure 9, and then applying a variety of advanced mathematical
techniques to solve for the digital calibration transfer function.

AFB enables time-interleaving ADC systems to use up to 90%
of their Nyquist band, and can be configured to operate in any
Nyquist zone of the converter (e.g., first, second, third, etc.) The
appropriate Nyquist zone can be selected using a set of logic inputs,
which control the required FIR coefficients.

AFB Design Example
The AD12400 is the first member of a new family of Analog
Devices products that leverage time interleaving and AFB. Its
performance will be used to illustrate what can be achieved when
state-of-the-art ADC design is combined with advanced digital
post-processing technologies. Figure 11 illustrates the AD12400’s
block diagram and its key circuit functions. The AD12400
employs a unique analog front-end circuit with 400-MHz input
bandwidth, two 12-bit, 200-MSPS ADC channels, and an AFB
implementation using an advanced field-programmable gate array
(FPGA). It was designed using many of the classical matching
techniques discussed above, together with a very low jitter clock
distribution circuit. These key components are combined to
develop a 12-bit, 400-MSPS ADC module that performs very
well over 90% of the Nyquist band and over an 85C temperature
range. It has an analog input bandwidth of 400 MHz.

ENCODE REF

LOW JITTER
CLOCK

DISTRIBUTION
CIRCUIT

PRECISION
VOLTAGE

REFERENCE
OPTIONAL
GAIN TRIM

ADVANCED
FILTER BANK

XILINX
VIRTEX II

FPGA

ENCODE
INPUTANALOG

FRONT-END
DISTRIBUTION

CIRCUIT

ANALOG
INPUT

0

180

DATA OUT
"A"

12-BIT
200MSPS

DATA OUT
"B"

12-BIT
200MSPS

XILINX
EEPROM

(FPGA LOAD)

DIGITAL
TEMPERATURE

SENSOR

DATA OUT "A"
12-BIT

200MSPS
AIN

12-BIT 200MSPS
A/D CONVERTER

ENCODE REF

DATA OUT "B"
12-BIT

200MSPSAIN

12-BIT 200MSPS
A/D CONVERTER

Figure 11. AD12400 block diagram.

The ADCs’ transfer functions are obtained using wide-bandwidth,
wide-temperature range measurements during the manufacturing
process. This characterization routine feeds the ADCs’ measured
transfer functions directly into the AFB coefficient calculation
process. Once the ADCs have been characterized, and the required
FIR coefficients have been calculated, the FPGA is programmed
and the product is ready for action. Wide bandwidth matching
is achieved using AFB’s special FIR structure and coefficient
calculation process. Wide temperature performance is achieved
by selecting one of the multiple FIR coefficient sets, using an on-
board digital temperature sensor.

The true impact of this technology can be seen in Figures 12 and
13. Figure 12 displays the image-spur performance across the first
Nyquist zone of this system. The first curve in Figure 12 represents
the performance of a 2-channel time-interleaved system that has
been carefully designed to provide optimal matching in the layout.
The behavior of the image spur in this curve makes it obvious that
this system was manually trimmed at an analog input frequency of
128 MHz. A similar observation of Figure 13 suggests a manual
trim temperature of 40C.

Analog Dialogue Volume 37 Number 3

 9

FREQUENCY (MHz)

IMAGE SPUR vs. FREQUENCY – AFB vs. 128MHz TRIM COMPARISON

0 20 40 60 80 100 120 140 160 180
–90

–85

–80

–75

–70

–65

–60

–55

IM
A

G
E

 S
P

U
R

 (
d

B
c)

–50

200

NO AFB

WITH AFB

Figure 12. Performance of a manually trimmed system “before
and after” AFB compensation over the frequency range.

TEMPERATURE (C)

IMAGE SPUR vs. TEMPERATURE – AFB vs. 128MHz TRIM COMPARISON

20 25 30 35 40 45 50 55
–100

–95

–90

–85

–80

–75

–70

–65

–60

–55

IM
A

G
E

 S
P

U
R

 (
d

B
c)

–50

60

NO AFB

WITH AFB

Figure 13. Performance of a manually trimmed system “before
and after” AFB compensation over the temperature range.

Despite a careful PCB layout, tightly matched front-end circuit,
tightly matched clock-distribution circuit, and common reference
voltages used in the AD12400 ADC, the dynamic range degrades
rapidly as the frequency and/or temperature deviates from the
manual trim conditions. This rapid rate of degradation can be
anticipated in any two-converter time-interleaved ADC system
by analyzing some of the sensitive factors affecting this circuit.
For example, the gain-temperature coefficient of a typical high-
performance, 12-bit ADC is 0.02%/ C. In this case, a 10C change
in temperature would cause a 0.2% change in gain, resulting in an
image spur of 60 dBc (see Equation 1). Considering just this single
ADC temperature characteristic, the predicted image spur is 3 dB
worse than the 30C performance displayed in Figure 13.

By contrast, the dynamic range performance shown in these
figures remains solid when the AFB compensation is enabled. In
fact, the dynamic range performance surpasses the 12-bit level
across a bandwidth of nearly 190 MHz and a temperature range
of 40C. Another significant advantage of this approach is that
the temperature range can actually be expanded from the 20C
to 60C range shown to 0C to 85C by using additional FIR
coefficient sets—as embodied in the AD12400.

CONCLUSION
Time interleaving is growing into a signif icant trend in
performance enhancement for high- speed ADC systems.
Advanced digital post-processing methods, such as AFB,
provide a convenient solution to the tough channel-matching
requirements at resolution levels that were not previously
achievable for time- interleaved systems. When combined
with the best ADC architectures available, advanced DSP
technologies, such as AFB, are ready to take high-speed ADC
systems to the next level of performance and facilitate greatly
improved products and systems in demanding markets such
as medical imaging, precise medicine dispensers (fluid flow
measurement), synthetic aperture radar, digital beam-forming
communication systems, and advanced test /measurement
systems. This technology will result in many breakthroughs
that will include 14 -bit/400-MSPS and 12-bit/800-MSPS
ADC systems in the near future.

ACKNOWLEDGEMENT
The author would like to thank Jim Hand and Joe Bergeron for
their guidance and innovative insights offered for this article. Their
contributions are greatly appreciated. b

REFERENCES
1 W. C. Black Jr. and D. A. Hodges, “Time Interleaved Converter

Arrays,” IEEE International Conference on Solid State Circuits,
Feb 1980, pp. 14–15.

2 W. C. Black Jr. and D. A. Hodges, “Time Interleaved Converter
Arrays,” IEEE Journal of Solid State Circuits, Dec 1980, Volume
15, pp. 1022–1029.

3 K. Poulton, et al., “A 20GS/s 8-b ADC with a 1MB Memory
in 0.18m CMOS,” IEEE International Conference on Solid State
Circuits, Feb 2003, pp. 318-319, 496.

4 Press Release, “Agilent Technologies introduces industry first
6 -GHz, 20 -GSa/s-per-channel oscilloscope and probing
measurement system,” Agilent Technologies Web Page,
Nov 1, 2002,

 http://www.agilent.com/about/newsroom/presrel/archive.html
5 S. Velazquez, “High-performance advanced f ilter bank

analog-to-digital converter for universal RF receivers,” IEEE
SP International Symposium on Time-Frequency and Time-Scale
Analysis, 1998, pp. 229–232.

6 Technical Description, “Advanced Filter Bank (AFB) Analog-to-
Digital Converter Technical Description,” V Corp Technologies,
http://www.v-corp.com/analogfilterbank.htm

7 N. Kurosawa, et al., “Explicit Analysis of Channel Mismatch
Effects in Time Interleaved ADC Systems,” IEEE Transactions
on Circuits and Systems I—Fundamental Theory and Applications,
Volume 48, Number 3, Mar 2003.

8 M. Gustavsson, J. J. Wikner and N. N. Tan, CMOS Data
Converters for Communications, Boston: Kluwer Academic
Publishers, 2000, pp. 257–267.

9 B. Brannon, “Aperture Uncertainty and ADC System
Performance,” Analog Devices, Inc. Application Note, AN-501,
http://www.analog.com/UploadedFiles/Application_Notes/
365163734AN501.pdf

Analog Dialogue Volume 37 Number 3

10

Dynamic Memory Allocation
Optimizes Integration of
Blackfin® Processor Software
By Lidwine Martinot [lidwine.martinot@analog.com]

Typical DSPs usually have a small amount of fast on-chip memory.
Microcontrollers usually have access to larger external memories.
The Blackfin processor has a hierarchical memory architecture
that combines the best of both approaches, providing several levels
of memory with differing performance levels. For applications
that require the most determinism, it can access on-chip SRAM
in a single core clock cycle. For systems that have larger code
sizes, larger on-chip and off-chip memory is available—with
increased latency.

By itself, this hierarchy is only moderately useful; today’s high-
speed processors would typically run at much slower speeds,
because larger applications would only fit in slower external
memory. To improve performance, programmers have the option
of manually moving key code in and out of internal SRAM. Also,
the addition of data and instruction caches into the architecture
makes external memory much more manageable. The cache
reduces the manual movement of instructions and data into the
processor core. This greatly simplifies the programming model
by eliminating the need to worry about managing the flow of data
and instructions into the core.

While Blackfin’s memory is versatile and easy to use in many
applications, there are some applications, such as embedded
cell phone systems, in which memory allocation can be difficult
for any embedded processor. In this kind of application, the
instruction cache does not provide the same level of code
management as manual movement of data in and out of SRAM.
This article suggests a dynamic memory allocation tool to deal
with the challenge.

An essential element in the development of protocol stack and
application software for mobile phone platforms is the efficient
handling of memory resources in the system. In the past, memory
resources were distributed “by hand” to each piece of code within
the system; but the growing number of modules such as video
and voice recognition makes solutions using this approach more
challenging to optimize. A dynamic memory allocator can be used
to allocate and free memory in a large application, removing the
need to manage this task manually. This article describes some
of the principles of dynamic memory allocation and demonstrates
a specific implementation that takes into account the overall
system considerations and the division of Blackfin’s memory
into different spaces with various properties (price, speed, dual-
access possibility).

Memory management solutions
In a large embedded application, there are several memory-
management approaches that can be realized. The major
approaches are described below.

Stack. All variables and buffers can be simply declared on top of
a function. They are stored in the Stack space, and that space is
released only when exiting the function. The main disadvantage of
this solution is Stack growth, e.g., the Stack keeps growing during
the function’s lifetime. Its lifetime can sometimes be very long,
since the function may be recursive and/or interruptible.

Manual overlap. Another popular solution consists of hard-coding
the buffer’s address using sections defined at the link stage. This
is a bit more flexible than allocating in the stack, because it allows
memory overlap. If two modules are never going to interrupt each
other, their temporary memory could share the same memory
section. Yet, as the number of modules grows, this solution
really becomes difficult to manage for an integrated system. In
addition, other memory problems—such as inappropriate overlap,
or insufficient buffer sizes for a given section—can be very hard
to track. To make matters worse, it is even more difficult when a
new feature is needed that requires two functions that have never
previously overlapped in time to run concurrently. Figure 1 shows
an example of a manual overlap-based implementation.

ADDRESSES:

0xffffffff

0x00000000

SECTION TMPFOO1
(USED BY TEMPORARY
VARIABLES IN
FUNCTION FOO1)

SECTION STATICFOO1 (USED BY STATIC
VARIABLES IN FUNCTION FOO1)

IN THIS EXAMPLE:
- FOO1 IS NEVER INTERRUPTED BY FOO2 AND FOO3 AND
 VICE VERSA.
- YET: ITS STATIC VARIABLE CANNOT BE OVERLAPPED WITH ANY
 OTHER BLOCKS.

SECTION TMPFOO2
(USED BY TEMPORARY
VARIABLES IN FOO2)

SECTION TMPFOO3
(USED BY TEMPORARY
VARIABLES IN FOO3)

DESCRIPTION OF SECTIONS

Figure 1. Manual overlap of memory.

Dynamic allocation. Dynamic allocation enables memory overlap:
once a memory space is not needed, it is freed and can be reused.
Unlike the stack allocation method, dynamic allocation does not
result in an increase of uncontrolled memory space. In fact, the
memory used by a function is released as soon as it is not required,
rather than waiting for the end of the function.

What are the features to consider when developing a dynamic
memory allocator?
A dynamic memory allocator is made up of two functions: one
allocates memory space; the other frees memory. The allocation
reserves some space to serve memory requests. When the free
function has been called, the reserved space is freed and can be
used to fulfill further requests. For example, let’s build a very
basic dynamic memory allocator to understand all the trade-offs
such a piece of code has to deal with. We will start with some basic
definitions and then describe the allocator.

Chunk. Let’s assume the allocator can give the required memory a
chunk of a big memory space. It is easy to understand that the whole
space cannot be taken away to serve the first request. Instead,
the initial memory space can be split into different chunks of
different sizes.

Header. When a memory request is made, how do we know that
a given piece is big enough? The size has to be kept in memory
somewhere. One solution among others is to keep it in a header
inside the chunk. This is an element of memory overhead. Also, at
least one bit in the header needs to be dedicated to indicate whether
the chunk is free or is in use.

Wandering through the chunks. If the first chunk is too small, how
do we jump to the next chunk? If all chunks are consecutive in
memory, it is enough to know the size of the chunk to jump to
the next. Another solution consists of keeping a pointer to the next
chunk in the header—this is the principle of linked lists.

www.analog.com/library/analogdialogue/archives/37-07/dynamic_memory.html Analog Dialogue Volume 37 Number 3

 11

Finding a fit. How do we select which free block is going to serve
the request? A necessary condition is to find a free chunk whose
size is at least the required size. The first chunk that meets this
requirement can then be used. This policy is called the first-fit.
Another policy, the best-fit policy, consists of looking for the
smallest free chunk that can accommodate the request. This is the
most challenging dilemma a dynamic memory allocator has to
deal with: speed versus memory size. The first-fit is fast but might
lead to huge memory losses, while the alternative of finding the
best fit requires time. A compromise can be reached with the use
of several linked lists of chunks (bins), in which each list has its
chunks of a similar size. The best-fit policy selects the bin, while
the first-fit selects the chunk within the bin.

Fragmentation. Another solution consists of using the first-fit
policy—and releasing the end of the chunk that is bigger than
the request. One downside of this solution is that soon the
memory is made up of several scattered blocks (different in size,
usually small) of unused memory. Future allocation is difficult
due to the small free spaces that result. This situation is called
memory fragmentation.

To speed a request, some allocators are based on linked lists
of free chunks. This saves some time, since the search can
avoid considering all in-use chunks. This method does have a
disadvantage, however. If only the free chunks are kept in lists,
it is hard to have all of them placed consecutively in memory;
this problem prevents the allocator from being able to take two
adjacent medium chunks and put them together (or coalesce them)
to build a bigger one.

����������������

��������
����

�������
�����������
�����

������
��������

������������������������
�������������������������
�������������������������
��������������

���������������������
����������������������

���� ����������

���� ����������

Figure 2. Examples of dynamic allocators.

We have now introduced all the concepts and compromises for
understanding the allocator designed for the Blackfin mobile phone
system: ADIalloc.

The current implementation: ADIalloc
The constant addition of signal-processing features (new video
and audio standards, for instance) has motivated the development
of an allocator referred to as ADIalloc for cell phone applications.
It is intended to help reduce both time-to-market of the product
using the processor—by avoiding undesired memory overlap—and
cost, by reducing the peak memory usage.

Basic principles
The current implementation is more focused on speed performance
than memory overhead. The memory is partitioned into bins. Each
bin holds chunks of memory of equal size. The chunks in a bin
have consecutive addresses, allowing a fast jump from one chunk

to the next. The policy to find the chunk that suits the request
is best-fit for the bin and first-fit within the bin—meaning the
first free chunk, since all chunks have the same size. Moreover,
the size of chunks in bins is chosen to facilitate finding the best
bin: they are all related by powers of 2. Chunks in bin (N+1) are
double the size of chunks in bin N (it is also possible for bin N to
contain 0 chunks...)

CHUNKS

CONSECUTIVE
IN MEMORY

BIN

Figure 3. Bins/Chunks configuration of ADIalloc.

Some software modules may occasionally need one “big” chunk.
However, if big chunks are allowed, the memory is going to be
partitioned into very few chunks. Instead of one big chunk, it
is better to have two smaller chunks that would be coalesced
together to form a big chunk in the few cases where it is needed.
Consequently, coalescing two chunks together is allowed.

To guarantee speed, each chunk has a header that indicates if it is
available and coalesced. In the case of coalesced chunks, the size
of the coalesced companion, or “buddy,” is kept in the header.
This is used to quickly restore the header of the buddy when the
couple is freed.

��������
�������

���������������

��������������

���������������
�����������������

�����������������
����������������
��������������

����������������������
�������������������
�������������

����

Figure 4. Chunks in ADIalloc.

What is specific to Blackfin
Blackfin adds yet another dimension to the memory allocator:
its data memory space is partitioned into several memory levels.
The memory levels have different characteristics in terms of price,
speed, and dual-access possibility:

• The external memory, Lext, is big and less expensive to use—but
is accessed with higher latency.

• The on-chip memory, L1, has fast access. It is itself split into
different banks and sub-banks, allowing two items of data
to be accessed at the same time (dual access) from separate
sub-banks.

Analog Dialogue Volume 37 Number 3

12

• L2 is in between, in terms of price and speed. However its
speed can be improved by caching it into L1. Caching is an
additional dimension.

Stack. Although (as seen earlier) allocating all variables in a
Stack is not a good solution, a Stack is still needed. For small
buffers, loop counters, and indexes there is no point to losing
cycles because of allocation. Yet there might be some uncertainty
about the allocation—stack or dynamic—of some buffers until
the system-integration stage. This is why the Stack is seen as an
additional memory level.

Cache. As mentioned above, Blackfin can cache L2 memory
into L1—or parts of L1. In that case, it is advantageous not to
have to readapt the allocator’s code to the new memory. During
initialization, the allocator is able to read the cache configuration
from some dedicated Blackfin registers, and then decide about
its bins and chunks. Yet since the allocator has to be tested on
any platform, it must remain minimally Blackfin-specific. Only
reading the data-cache configuration is Blackfin-specific. Apart
from that, the allocator can be fully tested on a PC with a compiler
other than Blackfin’s. The only difference there is that choice of
memory resource is not related to the platform’s speed or dual-
access features.

With all the above features ADIalloc becomes an important piece
of software. Therefore it should be made as “flexible” as possible,
as long as this does not overly impact the number of cycles.

Flexibility of the allocator
Macro. C -macros are extensively used in the ADIalloc
implementation. Indeed ADIalloc is itself a macro. The first benefit
is to be able to replace quickly one allocator by another without
having to rewrite all pieces of software that invoke ADIalloc.
For instance, this can be used to investigate the performance of
different dynamic allocators.

Alloca. Another advantage of the macro is to be able to use Stack
as a memory level without having to invoke the allocator in a
more complex manner than would be done with a malloc. Indeed,
allocating in Stack cannot be achieved through a function call.
Instead, when ADIalloc is invoked with Stack as memory level,
‘alloca’ is executed. (Alloca is available with most compilers. It
reserves space on the Stack only when the alloca instruction is
executed—unlike the declaration on the Stack on top of a function,
which reserves the space for the function lifetime.) The macro
ADIalloc tests the memory level required and redirects it to an
alloca or to a function call to the allocator, ADI_alloc.

���������������

�����������������

������������
�

�

���������������

Figure 5. Stack allocation via ADIalloc.

Storage of the desired memory level. It is a really great advantage to be
able to deal with the different memory levels on the Blackfin. To
make the best use of this feature the memory levels are not fixed
at compile time. Hence, for each allocation the allocator allows
testing of different memory levels without having to rewrite or
recompile the software module’s C code. A software module is
accompanied by a table that contains the memory level required
for such and such allocation. The table’s content can be changed
at run time as simply as writing a new desired memory level at a
specific address. Nevertheless it should be noted that if the memory
level required cannot be provided, the allocator picks up another
level—the closest one in terms of memory access speed.

�������������������
�������������������

�����������������
���������

���������
���������

��

��

�������������

�������������

�����

������������������
�����������������
�����������������

Figure 6. Input table: desired memory level.

Change Bins/Chunks Configuration. Another flexible feature of
ADIalloc is the ability to change the bins and chunks configuration
without having to recompile the allocator’s code. Indeed all
variables defining this configuration are saved into tables. The
tables are read during the initialization. At any time the tables’
content can be changed—which will modify the bins/chunks
configuration the next time the initialization is called. Not
having to fix the bins/chunks split at compile time leads, as a
next feature, to having a smart wrapper around the allocator that
dynamically resizes the memory. We can also think of a system
running two consecutive tasks that require two different memory
configurations. When a task finishes, the allocator initialization is
called with the configuration that best suits the second task.

Finally, ADIalloc is derived in two flavors: the first is used for
development and integration, the second one is used in the final
product. During development debug features are mandatory. The
next section provides further details of the current implementation
and how to make the best use of debug features.

How debug features improve implementation
Common issues when using memory allocator are inefficiencies
attributable to the allocator and the risk of not allocating and freeing
the memory properly—resulting mainly in memory leakage.

The allocator knows the memory partition. It also knows the
amount of memory requested and which memory addresses are
free. This allows debug features to be developed to take steps to
avoid memory leakage.

Analog Dialogue Volume 37 Number 3

 13

Track a free that has been forgotten. The first reason for a memory
leak occurs when a memory is allocated but never freed. This can
be easily prevented. In debug mode (not in normal mode, since this
test takes many cycles) the allocator builds statistics of the memory
usage. If the last report shows that some memory space is still in-
use, it means a free has been forgotten. To track the problem more
deeply, one can use another report which contains buffer names,
their addresses, and if they are being freed or allocated (the report
is built each time the allocator or the free function is called).

����

����

����

����

�
� � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� ��

����

��������������������������������

���
���

������������������������
�������������

Figure 7. How to track a free that has been forgotten.

Track that more space than reserved is used. The other type of leakage
occurs when a buffer allocates less space than what it needs, and
starts using the space outside what has been allocated to it. In
debug mode the allocator “marks” all free memory spaces with
a special code (a code which has a very low probability of being
a “real” datum). It not only marks free chunks, but also includes
all the addresses inside a chunk not required by the allocation. In
each allocated chunk the required size is also kept as part of the
allocated chunk. Hence each time the allocator is entered (for a
new allocation or a free) it verifies that:

• The free chunks only contain the special code

• The allocated chunks contain the special code between the
required size and the end of the chunk

The function that does this check can also be called at any time
outside the allocator. When leakage is noticed, a message is built
and passed to another module, which outputs it in one form or
another (screen, special visualization tool, high-speed logger for
real-time analysis, etc.)

��������������
�������������

����������������������������
����������������� ����������������������
����������������� �������������������������
��

Figure 8. Example of a viewer to track the allocator
messages (case of leakage).

Help select bins/chunks configuration. The allocator debug features can
also partly resolve the concerns regarding the allocator inefficiencies.
In debug mode the allocator saves such data as the memory required
versus the memory allocated, the number of chunks used per bin,
etc. This provides an easy way to avoid big inefficiencies—such as
having some bin sizes that are never used.

���

�
��
��
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�

��

��

��

��

���

� � � � � � � � � �� �� �� �� �� �� �� �� ��
�����������������

��������������������������

���
���

� � � � � � � � � �� �� �� �� �� �� �� �� ������

�����������������������

�
�
�
��
��
�
�

���

��

��

��

��

��

��

��

��

��

�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Figure 9. Data captured to help select the best Bins/
Chunks configuration.

Memory repartition between memory levels. A big concern is then
how to apportion the memory levels among the different pieces
of software. Obviously, the fast-access memory suits best every
single piece of code. Yet a choice has to be made since this memory
is limited. This choice can be made only once whole software
modules are built into a system. Usually the time-critical tasks
will need the fastest memory. The allocator can assist in making
such choices.

The allocator is all the more helpful, as it can be delivered
with a wrapper that takes care of running all possible memory
configurations for a specific module while conserving the number
of cycles required. This helps one to know the impact on cycles of
not being able to get the fastest memory for a specific buffer.

Analog Dialogue Volume 37 Number 3

14

�����������������
����������������

����������������
���������������

*�������������������
������������������

��������������������
�������������������
������������������

*�������������������
������������������������

Figure 10. Unit test flowchart.

Table I. Performance Matrix

Index In Table L1_B PASS/FAIL L2 PASS/FAIL Lext PASS/FAIL

pChannelInstance –82 PASS –71 PASS –119 PASS

pSharedMemStruct –73 PASS –66 PASS –109 PASS

pShared_BurstDec_CCDec_Interleave 94 PASS 56 PASS –48 PASS

pShared_EQ_CCDec_Mod_Info 5 PASS –81 PASS –67 PASS

CC_Dec_IO_EDGE_PDTCH 130* PASS –74 PASS 324 PASS

pDeInterleave –232 PASS –57 PASS 18115 PASS

pOutHeader 15 PASS –116 PASS 506 PASS

pScratch_Header_Decoder –281 PASS –83 PASS 3719 PASS

Metric –82 PASS 10440 PASS 123346 PASS

pPathMetric –417 PASS –84 PASS 77394 PASS

pOutRLC_Data –199 PASS –83 PASS 1832 PASS

pScratch_Data_Decoder –75 PASS 450 PASS 23624 PASS
*Means: +130 cycles if the buffer is in L1_B compared to the reference configuration.

The numbers shown in the table represent the difference in the number of cycles needed to run the unit test in the new configuration as
compared to the reference configuration.
The Reference Configuration is what is provided as default by the module’s writer.
PASS indicates that the result of running the unit test on the new configuration is the same as that of running the reference configuration.
The Reference Number of cycles is: 128078.

The wrapper runs a software module unit test (UT). The first time
it runs it, the allocator is asked to return the pointer’s name and
the address of the table where it looks for the memory level. After
collecting all addresses where it needs to look for memory levels, the
wrapper re-runs the UT for all possible memory configurations.

CONCLUSION
The current ADIalloc implementat ion is one possible
implementation of a dynamic memory allocator. Its use has shown
that the most useful features of the current implementation are the
debug features. They reduce the risks linked to dynamic allocation
(especially the risks of leakage). At the same time they help better
manage complex memory structures. It has now become much
easier in cell phone applications to add new software modules
inside Blackfin without having to rework the division of memory
between modules.

ACKNOWLEDGEMENT
The author acknowledges the invaluable contributions of Rick
Gentile, of the Blackfin Applications Group, and Zoran Zvonar,
DSP/Systems group leader. b

Analog Dialogue Volume 37 Number 3

Footnotes
1 Analog Dialogue 27-2, 1993, pp. 28-29. http://www.analog.com/library/
analogDialogue/Anniversary/14.html

2 Analog Dialogue 28 -2, 1994, p. 23. http://www.analog.com/library/
analogDialogue/Anniversary/Reader_Notes.html

3 Jung, Walter G., editor, Op Amp Applications. Norwood, MA: Analog
Devices, Inc., ©2002, pp. 7.109 to 7.138. To purchase a copy of the book,
phone 1-800-262-5643 (North America). (Code OP-AMP-APPLIC-
BOOK, $40). Outside North America, call your nearest ADI sales office.

4 Kester, Walt, editor, Practical Analog Design Techniques. Norwood, MA:
Analog Devices, Inc., ©1995. “EMI/RFI considerations” can be found at
http://www.analog.com/UploadedFiles/Associated_Docs/53333534294954
127648933Section9.pdf (pages 51 through 79).

5 Gerke, Daryl, P.E., and William Kimmel, P.E., “A Bibliography on
EMC/EMI/ESD and other threats to signal and circuit integrity.” Analog
Dialogue 30-2 (1996), p. 11. Also available online at www.analog.com/library/
analogDialogue/archives/30-2/bibliography.html

6 Gelbach, Herman, “High-frequency common mode, the contaminator of
signals.” Proceedings of the 39th International Instrumentation Symposium,
paper 93-070.

7 Wayne, Scott, “Finding the Needle in a Haystack—Measuring small
differential voltages in the presence of large common-mode voltages.”
Analog Dialogue, Volume 34 (2000), pp. 21-24. http://www.analog.com/
library/analogDialogue/archives/34-01/haystack/index.html

8 O’Grady, Albert, “Transducer/Sensor excitation and measurement techniques.”
Analog Dialogue Volume 34 (2000), pp. 33-37. http://www.analog.com/library/
analogDialogue/archives/34-05/sensor/index.html

9 www.scanivalve.com

(continued from page 2)

 15Analog Dialogue Volume 37 Number 3

PRODUCT INTRODUCTIONS: VOLUME 37, NUMBER 3
July
Power Output Stage for Class-D Audio Amplifier AD1991
High-performance OOK/ASK/FSK/GFSK Transmitter
 for ISM band systems . ADF7011
Industry’s first quad 256-position Digital Potentiometer
 with pin-selectable SPI/I2C interface AD5263

August
18-bit, 100-/570-/800-ksps Successive-Approximation
 ADCs accept fully differential inputs AD7678/79/74
4-GHz Fractional-N Frequency Synthesizer ADF4153
Dual 16-/14-bit serial-input,
 Current-Output DACs. AD5545/55
Logarithmic Converter provides 60-dB measurement
 range in optical communication systems ADL5306
1-bit, 2-port Bus Switch provides level translation
 between 1.8-V, 2.5-V, and 3.3-V systems ADG3241
Microprocessor Supervisory
 Circuits ADM6711, ADM6713, ADM803
10-bit 20-MHz CCD Signal Processor with
 Precision Timing™ Generator . AD9898
10-bit 27-MHz CCD Signal Processor with
 Precision Timing Generator . AD9991
Integrated Vcom and Gamma Buffers for flat panel LCD
 display applications . ADD8702
Charge-Pump Regulator for color TFT LCD panels ADM8832
Multiformat Video Encoder has six 12-bit
 Noise Shaped Video (NSV™) DACs ADV7310/11

September
16-bit, 1-Msps Successive-Approximation ADC
 includes on-chip voltage reference. AD7653
16-/24-bit Sigma-Delta ADCs consume less than
 75 microamps . AD7788/89
16-/24-bit Sigma-Delta ADCs include
 differential input buffer . AD7790/91
Low-distortion, high-speed dual Op Amp has rail-to-rail
 inputs and outputs . AD8028
Micropower precision Op Amp has rail-to-rail
 inputs and outputs . AD8603
Precision Op Amp combines low noise, low bias current,
 and low power . AD8671
Broadband Quadrature Demodulator operates from
 50 MHz to 1 GHz . AD8348
IF Digitizing Subsystem operates from 10 MHz to
 300 MHz . AD9864
32-bit floating-point SHARC DSP
 Microcomputer . ADSP-21160N
Single-phase, multifunction Energy-Metering IC
 with di/dt sensor interface . ADE7753
Precision, low-noise, 1.000-/1.200-V shunt
 Voltage References . ADR510/12
Dual SPDT CMOS Switches/2:1 Multiplexers have
 0.5-ohm on -resistance. ADG836
Wideband SPST CMOS Switches have 37-dB isolation
 at 1 GHz . ADG901/02
Wideband SPDT CMOS Switches/2:1 Multiplexers
 have 37-dB isolation at 1 GHz. ADG918/19
Digital Temperature Sensor with quad voltage-output
 DAC is accurate to 0.5C ADT7316/17/18
10-bit Digital Temperature Sensor includes
 8-channel ADC. ADT7411
Digital Temperature Sensor with 4-channel ADC
 and quad DAC is accurate to 0.5C. ADT7516/17/18
Complete 12-bit, 25-/40-MHz CCD Signal
 Processors . AD9944/45
10-/12-bit, 25-/36-MHz CCD Signal Processor with
 Precision Timing Generator AD9948/49
12-bit 36-MHz CCD Signal Processor with Precision
 Timing Generator for 3-field area arrays. AD9995
Multiformat 216-MHz Video Encoder has six 14-bit
 Noise Shaped Video® (NSV) DACs. ADV7314
Multiformat Video Encoder has three 11-bit DACs. . . ADV7330

AUTHORS
Mercedes Casamayor (page 3) is an
Applications Engineer in the analog-to-
digital (A/D) converter group at Analog
Devices, Limer ick, Ireland. She was
graduated in Industr ial Engineer ing,
specializing in Electronics and Automatics,
f rom the Escuela Técnica Super ior de
Ingenieros Industriales (ETSII.) at Polytechnic
University of Valencia (UPV), Spain.
On completion of her degree she spent
five months in the Centre for Biomedical
Engineering at the University of Limerick. She joined Analog
Devices in 2001. In her spare time she enjoys reading, swimming,
and being with her friends.

Claire Croke (page 3) is an Applications
Engineer at Analog Devices in Limerick,
Ireland, working in the Precision Converter
group. She currently has responsibility
for analog-to -digital (A/D) conversion
products and has also worked with the
switch group. Claire holds a BEng from
the University of Limerick. She joined
Analog Devices in 1999 after completing
her degree. In her spare time Claire enjoys
reading, tennis, and walking.

Mark Looney (page 5) is a Senior Design
Engineer at Analog Devices in Greensboro,
NC. He joined ADI in 1998 and has since
designed military - quali f ied dc - to - dc
converters and high-speed A/D converter
modules. He earned BS (1994) and MS
(1995) degrees in Electrical Engineering
from the University of Nevada, Reno, and
has published several articles. Prior to joining
ADI, he helped start IMATS, a vehicle
electronics and traffic solution company,
and designed dc-to-dc converters and EMI filters for space-level,
radiation-hostile environments.

Lidwine Martinot (page 10) was graduated
in 1997 with an Engineering Diploma from
Telecom Paris and received an MSc in Signal
Processing and Communication Systems
from the University of Bristol, UK. She
joined the ADI Wireless-DSP team two years
ago, after four years working at Motorola.
Over the last five months, most of Lidwine’s
leisure time was occupied with taking care
of her baby girl.

www.analog.com/analogdialogue dialogue.editor@analog.com
Analog Dialogue is the free technical magazine of Analog Devices, Inc., published
continuously for 37 years—starting in 1967. It discusses products, applications,
technology, and techniques for analog, digital, and mixed-signal processing. It is
currently published in two editions—online, monthly at the above URL, and quarterly
in print, as periodic retrospective collections of articles that have appeared online. In
addition to technical articles, the online edition has timely announcements, linking to
data sheets of newly released and pre-release products, and “Potpourri”—a universe
of links to important and rapidly proliferating sources of relevant information and
activity on the Analog Devices website and elsewhere. The Analog Dialogue site is,
in effect, a “high-pass-filtered” point of entry to the www.analog.com site—the
virtual world of Analog Devices. In addition to all its current information, the
Analog Dialogue site has archives with all recent editions, starting from Volume 29,
Number 2 (1995), plus three special anniversary issues, containing useful articles
extracted from earlier editions, going all the way back to Volume 1, Number 1.

If you wish to subscribe to—or receive copies of—the print edition, please go to
www.analog.com/analogdialogue and click on <subscribe>. Your comments
are always welcome; please send messages to dialogue.editor@analog.com
or to these individuals: Dan Sheingold, Editor [dan.sheingold@analog.com]
or Scott Wayne, Managing Editor and Publisher [scott.wayne@analog.com].

Worldwide
Headquarters
One Technology Way
P.O. Box 9106
Norwood, MA
02062-9106 U.S.A.
Tel: 781.329.4700,
(1.800.262.5643,
U.S.A. only)
Fax: 781.326.8703

Analog Devices, Inc.
Europe
c/o Analog Devices SA
17–19, rue Georges Besse
Parc de Haute
Technologie d’Antony
F-92182
Antony Cedex, France
Tel: 33.1.46.74.45.00
Fax: 33.1.46.74.45.01

Analog Devices, Inc.
Japan Headquarters
New Pier Takeshiba
South Tower Building
1-16-1 Kaigan,
Minato-ku, Tokyo
105-6891, Japan
Tel: 813.5402.8210
Fax: 813.5402.1063

Analog Devices, Inc.
Southeast Asia
Headquarters
RBS Tower, Rm 4501-3
Times Square
1 Matheson Street
Causeway Bay
Hong Kong, PRC
Tel: 852.2.506.9336
Fax: 852.2.506.4755

Vo
lu

m
e

37
,

N
um

be
r

3,
 2

00
3

Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the
purchaser under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the
I2C Standard Specification as defined by Philips.
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
Printed in the U.S.A. M02000373-77-11/03

