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Editor’s Notes
RF IS EVERYWHERE—BEWARE!
It’s high time for a reminder of a theme 
that cannot be repeated too often: the 
need for designers of precision low level 
dc and low frequency equipment to be 
alert to the adverse effects of ever-
increasing ambient high frequency 
radio-frequency energy, from MHz to 
GHz, on their measurements. In this 
world, conductors form antennas, 
converting electromagnetic waves into voltages and currents—
both normal-mode and common-mode. Shielding and filtering 
are fine, but how many op amp data sheets ordinarily specify CMR 
at radio frequencies?

We have published warnings. For example, in “Ask the 
Applications Engineer—14,” there is a discussion of high 
frequency signal contamination,1 and in a later issue, further 
illumination of the subject by a reader.2 Walt Jung’s recent book, 
Op Amp Applications, contains substantive discussions—including 
a useful set of references—in a 30-page section headed “EMI/RFI 
considerations.”3 You can find an earlier version of this section 
online in the Hardware Design chapter of the online seminar book, 
Practical Analog Design Techniques, edited by Walt Kester.4 Also, 
in 1996 (Volume 30, No. 2), we published “A Bibliography on 
EMC/EMI/ESD,” by Daryl Gerke, P.E., and William Kimmel, 
P.E.,5 describing a variety of useful texts on these topics.

In Analog Dialogue online, 35-4, August 2001, we published an 
item by a reader, Herman R. Gelbach, P.E., “A Reader Notes,” 
stressing the problem of common-mode RFI. This note has 
never appeared in print, but it deserves preservation (and our 
readers need the information), so it is revived below in (relatively) 
indestructible print.

–Dan Sheingold, Editor

A READER NOTES:
[From Analog Dialogue 35-4, August 2001. www.analog.com/library/
analogDialogue/archives/35-04/reader.html] 

High-Frequency-Caused Errors in Millivolt-Measurement Systems

By Herman R. Gelbach, P.E. ret. (hrgelbach@juno.com)

[Editor’s Note: Herman never tires of reminding us of the effects of EMI 
in precision data systems. Faithful readers may recall the adventure that 
he and our James Bryant shared, summarized in an article that was 
included in our “Ask The Applications Engineer” collection.1 In the 
present communication, he takes us to task with respect to a couple of 
recent Analog Dialogue articles, for not once again reminding designers 
who use precision ICs that they must deal with both normal-mode and 
common-mode threats  to instrumentation-system accuracy. Herman is 
a Life Fellow of the Instrument Society of America (ISA) and is a design 
consultant to Scanivalve Co. If you wish to see any of his writings on this 
subject, get in touch with him at the above email address.]

I am saddened that the many copies of my ISA paper,6 High-
Frequency Common Mode, The Contaminator of Signals, which have 
been sent to ADI are apparently gathering dust. Scott Wayne 
states “all Analog Devices instrumentation amplifiers are fully 
specified for both dc and low-frequency ac common mode 
rejection.”7 He has completely missed mentioning the source 
of high-frequency induced errors, unequal slewing of the input 

device to the impressed signal. I am led to assume that he has 
never checked for high-frequency common-mode voltages, but 
a couple of years ago at a seminar that I conducted for the local 
IES chapter, I checked! 

I found in an after-working-hours office environment, on the end 
of a 50-foot water-pipe-grounded input lead a couple of hundred 
millivolts of high-frequency CM trash. This will give significant 
offset (slewing) errors in any unprotected instrumentation 
amplifier that I have ever tested—and that’s dozens of different 
commercial instrument designs. See Figure 3 of my paper for a 
real-life clean laboratory environment. It shows about 400 mV 
p-p of high-frequency trash. Most important, no grounding 
scheme—except a continuous sheet of copper with all system 
components, including signal wiring and sensors intimately in 
contact with it—will get rid of this! Maxwell’s and Heaviside’s 
equations still are with us. The only practical solution is to 
prevent the unwanted high-frequency signals from reaching 
the point of rectification.

A similar comment would apply to Albert O’Grady’s article.8 
High-frequency CM is ever present in measurement systems, 
especially in these days of computers and RF-coupled telephones. 
Even the design of the remote-sensing transducer excitation-
supply error amplifier must consider this error source! On page 
37, he talks of parasitic thermocouples and how to eliminate the 
effect. Unfortunately, such offsets are likely to be insignificant 
relative to offsets caused by RF induced in the system’s wiring. 
The application of the suggested process only contributes more 
unknown errors. Gold-copper and copper-copper thermocouples 
have an extremely low output, so the source of the errant emf is 
not thermoelectric if normal care is used in the system design.

A test that I had run many years ago tested the variation in voltage 
at an amplifier input from a loop consisting of signal-conditioner 
board-edge connector, AMP patchboard connectors, balance pit 
patch board Deutsch connectors, in-model Winchester SMRE 
connectors, and was terminated in the two wires being connected 
to the two terminals of a Constantan strain gage glued to the model 
structure. Copper-Constantan thermocouples have a very high 
output; therefore an output might be expected if the temperature 
of the couples was not exactly matched. The total loop length was 
perhaps 200 ft. 

The loop voltage was observed with an Astrodata Nanovoltmeter, 
easily capable of 100-nanovolt stability over the test time. The 
observed loop-voltage variation over the 8 -hour shift was 
3 microvolts, p-p. This included wind-tunnel warmup and 
several Mach series from 0.3 to 0.95 Mach. Balance pit and model 
temperatures, with the several connectors, varied to 130F. In 
another test of a few Dynamics, Inc., amplifiers, they were found 
to repeat offsets within 1/8 microvolt RTI over a week’s time using 
the normal system calibration relays and resistance dividers. These 
are raw data without any modification. The amplifiers have PMI/ADI 
MAT01 matched monolithic dual-transistor input pairs. Because 
of the results of the two cited tests, I am completely unimpressed 
with discussions of correcting for thermal offsets in wiring.

If any of your readers (or colleagues) are interested in my 
comments, and can’t find a copy of the above-mentioned ISA 
paper, or if they have an interest in a writeup that I made for 
Scanivalve Co.,9 “What do I do with this third wire?” please 
email me. The latter article should be required reading for any 
one interested in the subject of “grounding” and shielding of 
sensors, and their interconnection to the receiving device and 
its “ground.” 

(continued on page 14)
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How to Save Power in Battery 
Applications Using the Power-Down 
Mode in an ADC
By Mercedes Casamayor
[mercedes.casamayor@analog.com]
Claire Croke [claire.croke@analog.com]
Size and power consumption are two critical features in portable 
battery-powered applications. Otherwise acceptable components 
can be designed out of portable systems based on deficiencies in 
these two features alone. Everybody desires smaller, more compact 
mobile phones, MP3 players, PDAs, and digital cameras—with 
increased time between battery charges or replacement. For 
semiconductor manufacturers, this translates into a requirement 
for lower power ICs with high performance and the same—or even 
extra—features in ever smaller packages. 

In portable battery-powered applications, battery life is a critical 
concern to the system designer. Battery discharge curves differ, 
depending on the type of battery and the current drain. For 
example, Figure 1 shows the typical discharge curves for a 
Lithium/MnO2 (primary) cell with three typical current loads. 
They show that the higher the current it must supply, the shorter 
the battery’s life. Since even small amounts of current shorten the 
battery’s life, minimizing the current drawn quiescently by the 
system components when not operating—or whenever possible 
during operation—can extend battery life. 
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Figure 1. Typical discharge curves.

Nowadays, almost every analog/digital converter (ADC) sold 
into the battery-powered device market provides a power-down 
mode as a standard feature. The technique used to place the 
ADC into the power-down state—and its effectiveness—differ 
from part to part. 

Some ADCs have a dedicated shut-down pin to shift the device 
into power-down mode. The weakness of this approach is that an 
extra pin, which results in increased pin count for the ADC, can 
increase the package size. Other ADCs, like the AD7887, require 
a write to an on-board control register to produce a power-down 
state. This is generally the case with multichannel ADCs, where 
an internal register is used for channel selection as well as mode 
selection. This on-board register also means an extra DATA IN 
serial interface pin. 

In order to cut down on pin count, some recent ADCs use the 
standard interface lines to implement power-down modes; an 
example is the 12-bit, 1-MSPS AD7476A, available in the tiny 
6-pin SC70 package. 

The AD7476A’s 3-wire read-only serial interface not only controls 
the conversion process and accesses the conversion result from the 
ADC—it is also used to establish the device’s different operating 
modes. The mode of operation is selected by controlling the 
state of CS (conversion start) during a conversion. This has the 
advantage that the signals required to change modes are standard 
serial interface signals.

The serial interface consists of the CS, SCLK, and SDATA 
lines. A normal conversion requires sixteen serial clock pulses 
for completion. The CS signal is used to initiate the conversion 
and to frame the sixteen serial clocks. After the conversion has 
been initiated, the time at which CS is pulled high will determine 
if the AD7476A will enter power-down mode—or, if already in a 
power-down mode, whether or not the AD7476A will return to 
normal operation. Changing the mode of operation can easily be 
done with a standard 8- or 16-pulse SCLK burst from a micro-
controller—or with a framing signal of any length from a DSP. 

Figure 2 shows the timing diagram during a normal conversion, 
and Figure 3 shows how the power-down mode can be entered 
by controlling the CS signal. This mode of operation is designed 
to provide flexible power management options and to minimize 
power dissipation for different application requirements.

To reduce power consumption and maintain battery life, the 
AD7476A should be placed into its low power state between 
conversions or after a burst of several conversions. 

CS

SCLK

1 16

SDATA 4 LEADING ZEROS + CONVERSION RESULT

Figure 2. Serial interface signals in a normal conversion.

INVALID DATA
THREE-STATE

CS

SCLK

SDATA

1 2 10 16

Figure 3. Using the serial interface signals to enter power-down mode.

www.analog.com/library/analogdialogue/archives/37-09/ADC_powerdown.htmlAnalog Dialogue Volume 37 Number 3
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More about the AD7476A
The AD7476A is a 12-bit successive approximation (SAR-type) 
ADC, operating on a 2.35-V to 5.25-V supply and capable of 
throughput rates of up to 1 MSPS. The AD7476A combines 
CMOS technology and advanced design techniques to achieve 
low power-dissipation at high throughput rates. 

The AD7476A’s average power consumption during the cycle time  
is determined by the percentage of time it spends in a full power 
state (operational), as compared to the interval spent in a low power 
state (power down). The greater the time spent in power-down, 
the lower the average power consumption.

To achieve the lowest power dissipation with the AD7476A, 
the conversion should be run as quickly as possible. Since the 
conversion time is determined by the SCLK frequency, the faster 
the SCLK frequency, the shorter the conversion time. Thus, the 
device can remain in the power-down mode for a longer interval 
and will dissipate maximum power for a shorter time. 

Figure 4 shows the average power consumption by the AD7476A 
for different SCLK frequencies with a fixed throughput rate of 
100 kSPS. The ADC is put in the power-down mode after the 
conversion is complete, and is powered up by means of a dummy 
conversion. As the plot shows, the faster the clock frequency, the 
lower the average power consumption. 
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Figure 4. AD7476A power consumption for different 
serial clock frequencies.

Figure 5 shows that for a fixed SCLK frequency of 20 MHz, when 
operating the ADC at low throughput rates, the average power 
consumed by the ADC is very low. However, as the throughput 
rate increases, the average power consumption increases, because 
the ADC remains in a power-down state for a shorter period of 
time compared to the time in the operating state. The other plot 
shows the average power consumed by the ADC when there is no 
power-down mode implemented between conversions. Together 
they show that—while at lower throughput rates significant power 
savings can be achieved by placing the ADC into a power-down 
state between conversions—increasingly diminished power savings 
accrue as the conversion rate increases. For example, at 300 kSPS, 
the difference between the two cases is less than 0.5 mW. 

A further step in the different power-down modes implemented 
through standard serial interface signals is the automatic power-
down mode. Following the trend of very low power ADCs for 
portable battery-powered applications, Analog Devices has recently 

made available the AD7466, a micropower, 12-bit  SAR-type ADC 
housed in a 6-lead SOT-23 package. It can be operated from 1.6 V 
to 3.6 V and is capable of throughput rates of up to 200 kSPS.
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Figure 5. AD7476A power consumption comparison.

The AD7466 powers up prior to conversion and returns to power-
down mode when the conversion is complete; this eliminates the 
need for dummy conversions. In the same way as for the AD7476A, 
the AD7466’s conversion time is determined by SCLK, allowing 
the conversion time to be reduced by increasing the serial clock 
speed, thus providing the same kind of power saving.

Figure 6 shows the AD7466’s power consumption for different 
throughput rates, serial clock frequencies, and supplies. The 
current consumption in power-down mode is typically 8 nA. 
The AD7466 consumes 0.9 mW max when operating at 3 V, and 
0.3 mW max for 1.8 V operation at 100 kSPS. 
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Figure 6. AD7466 power consumption vs. throughput 
rate for different SCLK and supply voltages.

We have shown that faster SCLK frequencies and longer power-
down modes greatly reduce the average power consumed by the 
ADC. These power savings, combined with the space-saving 
6-lead 2 mm  2.1 mm SC70 surface-mount package, make 
the AD7476A an ideal candidate for portable battery-powered 
applications and a very compact alternative to other solutions. And 
for extremely low-power-budget applications powered at 3.6 V, 
the AD7466 is the ideal solution.  b

Analog Dialogue Volume 37 Number 3
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Advanced Digital Post-Processing 
Techniques Enhance Performance
in Time-Interleaved ADC Systems
By Mark Looney [mark.looney@analog.com]

INTRODUCTION
Time interleaving of multiple analog-to-digital converters by 
multiplexing the outputs of (for example) a pair of converters 
at a doubled sampling rate is by now a mature concept—first 
introduced by Black and Hodges in 1980.1, 2 While designing a 
7-bit, 4-MHz A/D converter (ADC), they determined that a time-
interleaved solution would require less die area than a comparable 
2n flash converter design. This new concept proved of great value 
in their design, but saving space was not its only benefit. Time 
interleaving of ADCs offers a conceptually simple method for 
multiplying the sample rate of existing high-performing ADCs, 
such as the 14-bit, 105-MSPS AD6645 and the 12-bit, 210-MSPS 
AD9430. In many different applications, this concept has been 
leveraged to benefit systems that require very high sample rate 
analog-to-digital conversion.

While the speed and resolution of standard ADC products have 
advanced well beyond 4 MHz and 7 bits, time-interleaved ADC 
systems (for good reasons) have not advanced far beyond 8-bit 
resolution. Nevertheless, at 8-bit performance levels, this concept 
has been widely adopted in the test and measurement industry, 
particularly for wideband digital oscilloscopes. That it continues to 
make an impact in this market is evidenced by the 20-GSPS, 8-bit 
ADC that was recently developed by Agilent Labs3 and adopted by 
the Agilent Technologies Infiniium™ oscilloscope family.4 Indeed, 
time-interleaved ADC systems thrive at the 8-bit level, but they 
continue to fall short in applications that require the combination 
of high resolution, wide bandwidth, and solid dynamic range.

The primary limiting factor in time-interleaved ADC systems 
at 12- and 14-bit levels is the requirement that the channels be 
matched. An 8-bit system that provides a dynamic range of 50 dB 
can tolerate a gain mismatch of 0.25% and a clock-skew error of 
5 ps. This level of accuracy can be achieved by traditional methods, 
such as matching physical channel layouts, using common ADC 
reference voltages, prescreening devices, and active analog 
trimming, but at higher resolutions the requirements are much 
tighter. Until now devices employing more innovative matching 
techniques have not been commercially available. 

This article will outline in detail the matching requirements for 
12- and 14-bit time-interleaved ADC systems, discuss the idea 
of advanced digital post-processing techniques as an enabling 
technology, and introduce a device employing the most promising 
solution to date, Advanced Filter Bank (AFB™), from V Corp 
Technologies, Inc.5, 6

Time Interleaving Process Overview
Time interleaving of ADC systems employs the concept of running 
m ADCs at a sample rate that is 1/m of the overall system sample 
rate. Each channel is clocked at a phase that enables the system as 
a whole to sample at equally spaced increments of time, creating 
the seamless image of a single A/D converter sampling at full 
speed. Figure 1 illustrates the block- and timing diagrams of a 
typical four-channel, time-interleaved ADC system. Each of the 
four ADC channels runs at one-fourth the system’s sample rate, 
spaced at 90 intervals. The final output data stream is created by 

interleaving all of the individual channel data outputs in the proper 
sequence (e.g., 1, 2, 3, 4, 1, 2, etc.). In a two-converter example, 
both ADC channels are clocked at one-half of the overall system’s 
sample rate, and they are 180 out of phase with one another.

1 = 0

2 = 90

3 = 180

4 = 270

DATA
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MASTER
CLOCK

ANALOG
INPUT

1

2
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1 2 3 4 1

CHANNEL 1

1 = 0

ENCODE

AIN DATA 1

CHANNEL 2

2 = 90
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AIN DATA 2

CHANNEL 3

3 = 180

ENCODE

AIN DATA 3

CHANNEL 4

4 = 270

ENCODE

AIN DATA 4

ANALOG
INPUT

Figure 1. Four-channel time-interleaved ADC system.

For simplicity, this article focuses primarily on two-converter 
systems, but four-converter systems are discussed when required 
to articulate key performance differences. Most of the block 
diagrams, mathematical relationships, and solutions will highlight 
the two-channel configuration.

Design Challenge of Time Interleaving
As mentioned, channel-to-channel matching has a direct impact 
on the dynamic range performance of a time-interleaved ADC 
system. Mismatches between the ADC channels result in dynamic 
range degradation that—in an FFT plot—show up as spurious 
frequency components called image spurs and offset spurs. The 
image spur(s) associated with time-interleaved ADC systems are 
a direct result of gain- and phase mismatches between the ADC 
channels. The gain- and phase errors produce error functions 
that are orthogonal to one another. Both contribute to the image-
spur energy at the same frequency location(s). The offset spur is 
generated by offset differences between the ADC channels. Unlike 
the image spur(s), the offset spurs are not dependent on the input 
signal. For a given offset mismatch, the offset spur(s) will always be 
at the same level. Extensive studies of the behavior of these spurs 
have resulted in several mathematical methods for characterizing 
the relationship between channel matching errors and dynamic 
range performance.7, 8

While these methods are thorough and very useful, the “error 
voltage” approach used here provides a simple method for 
understanding the relationship without requiring a deep study 
of complex mathematical derivations. This approach is based on 
the same philosophy used in Analog Devices Application Note 
AN-5019 to establish the relationship between aperture jitter and 
signal-to-noise (SNR) degradation in ADCs. The error voltage is 
defined as the difference between the “expected” sample voltage and 
the “actual” sample voltage. These differences are a result of a large 
subset of errors that fall into three basic categories: gain (Figure 2), 
phase (Figure 3), and offset (Figure 4) mismatches. 

www.analog.com/library/analogdialogue/archives/37-08/post_processing.htmlAnalog Dialogue Volume 37 Number 3
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Figure 4. Voltage error due to offset mismatch.

In a two-converter interleaved system, the error voltages generated 
by gain and phase mismatches result in an image spur that is located 
at Nyquist minus the analog input frequency. The offset mismatch 
generates an error voltage that results in an offset spur that is located 
at Nyquist. Since the offset spur is located at the edge of the 
Nyquist band, designers of two-channel systems can typically 
plan their system frequency around it, and focus their efforts on 
gain- and phase matching. Figure 5 displays a typical FFT plot 
for a two-channel system. 
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Figure 5. Typical two-converter interleaved FFT plot.

In a four-converter interleaving system, there are three image 
spurs and two offset spurs. The image spurs, generated by gain 
and phase mismatches between the ADC channels, are located 
at (1) Nyquist minus the analog input frequency and (2) one-half 
Nyquist plus or minus the analog input frequency. The offset spurs 
are located at Nyquist and at one-half of Nyquist (middle of the 
band). Figure 6 displays a typical FFT plot of a four-converter 
system, illustrating the locations of these five spurs.
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Figure 6. Typical four-converter interleaved FFT plot.

Once the error voltages from each of the three mismatch groups 
are known, the following equations can be used to calculate the 
image and offset spurs (ISgain, ISphase, IStotal, OSoffset) in a single-
tone, two-converter system:
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As noted earlier, the gain- and phase errors generate error 
functions that are orthogonal7, requiring a “root-sum-square” 
combination of their individual contributions to the image spur. 
Using these equations, an error budget can be developed to 
determine what level of matching will be required to maintain a 
given dynamic range requirement. For example, a 12-bit dynamic 
range requirement of 74 dBc at an input frequency of 180 MHz 
would require gain matching better than 0.02% and aperture delay 
matching better than 300 fs! If the gain can be perfectly matched, 
the aperture delay matching can be “relaxed” to approximately 
350 fs. Figure 7 displays an example of a detailed “error budget 
curve” for this 12-bit, 180-MHz example.
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Figure 7. Error budget: 12-bit, 2-channel, 180-MHz input.

Table I provides the matching requirements for several different 
cases to illustrate the extreme precision required to make a classical 
time-interleaved A/D conversion system work at 12- and 14-bit 
resolutions over wide bandwidths.

Table I. Time-interleaved ADC matching requirements.
Performance  Gain  Aperture
Requirement SFDR Matching Matching
at 180 MHz (dBc) (%) (fs)
12 Bits 74 0.04 0
12 Bits 74 0 350
12 Bits 74 0.02 300
14 Bits 86 0.01 0
14 Bits 86 0 88
14 Bits 86 0.005 77

Traditional Approach to Wide-Bandwidth Time-Interleaved 
ADC Systems
A traditional, 2-channel time-interleaving ADC system employs 
the basic configuration displayed in Figure 8. The first level of 
matching in traditional time-interleaving ADC systems is achieved 
through reducing the physical and electrical differences between 
the channels. For example, gain matching is typically controlled 
by the use of common reference voltages and carefully matched 
physical layouts. Phase matching is achieved by manually tuning 

the electrical length of the clock (or analog input) paths and/or 
through special trimming techniques that control an electrical 
characteristic of the clock distribution circuit (rise/fall times, bias 
levels, trigger level, etc.). The offset matching depends on the 
offset performance of the individual ADCs.
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12-BIT
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AIN

ADC "B"

Figure 8. Functional diagram of a traditional
time-interleaved ADC.

Many of these matching approaches are based on careful analog 
design and trim techniques. While there has been an abundance 
of excellent ideas to address these tough matching requirements, 
many of them require additional circuits that add error sources 
of their own—defeating the original purpose of achieving precise 
gain and phase matching. An example of such an idea would be 
setting the rise and fall times of the two different clock signals. 
Any circuit that could provide this level of control would be 
subjected to increased influence of power-supply voltage—and 
temperature—on each channel’s phase behavior.

Advanced Digital Post Processing
The development of new digital signal processing techniques, 
along with the advances in inexpensive, high-speed, configurable 
digital hardware platforms (DSPs, FPGAs, CPLDs, ASICs, etc.), 
has opened the way for breakthroughs in time-interleaving ADC 
performance. Digital post-processing approaches have several 
advantages over classical analog matching techniques. They are 
flexible in their implementation and can be designed for precision 
well beyond the ADC resolutions of interest. A conceptual view 
of how digital signal processing techniques can impact time-
interleaved system architectures can be found in Figure 9. This 
concept employs a set of digital calibration transfer functions that 
process each ADC’s output data, creating a new set of “calibrated 
outputs.” These digital calibration transfer functions can be 
implemented using a variety of digital filter configurations (FIR, 
IIR, etc.). They can be as simple as trimming the gain of one 
channel or as complicated as trimming the gain, phase, and offset 
of each channel over wide bandwidths and temperature ranges. 

Wide bandwidth and temperature matching presents the greatest 
opportunity—and challenge—for using digital post-processing 
techniques to improve the performance of time-interleaving ADC 
systems. The mathematical derivations required for designing the 
digital calibration transfer functions for multiple ADC channels 
over wide bandwidths and temperature ranges are extremely 
complex and not readily available. However, a great deal of 
academic work has been invested in this area, creating a number 
of interesting solutions. One of these solutions, known as Advanced 
Filter Bank (AFB), stands out in its ability to provide a platform 
for a significant breakthrough.
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Figure 9. Example of digital post-processing architecture.

Advanced Filter Bank (AFB)
AFB is one of the first commercially available digital post- 
processing technologies to make a significant impact on the 
performance of time-interleaving ADC systems. By providing 
precise channel-to-channel gain, phase, and offset matching over 
wide bandwidths and temperature ranges, AFB is well-positioned 
to solidly establish time-interleaving ADC systems in the area 
of high-speed, 12-/14-bit applications. Besides its matching 
functions, AFB also provides phase linearization and gain-flatness 
compensation for ADC systems. Figure 10 displays a basic block 
diagram representation of a system employing AFB.
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DIGITAL
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ADVANCED FILTER BANK ANALOG-TO-DIGITAL CONVERTER

Figure 10.  AFB basic block diagram.

By using a unique multirate FIR filter structure, AFB can be easily 
implemented into a convenient digital hardware platform, such as 
an FPGA or CPLD. The FIR coefficients are calculated using a 
patented method that involves starting with the equations seen in 
Figure 9, and then applying a variety of advanced mathematical 
techniques to solve for the digital calibration transfer function.

AFB enables time-interleaving ADC systems to use up to 90% 
of their Nyquist band, and can be configured to operate in any 
Nyquist zone of the converter (e.g., first, second, third, etc.) The 
appropriate Nyquist zone can be selected using a set of logic inputs, 
which control the required FIR coefficients.

AFB Design Example
The AD12400 is the first member of a new family of Analog 
Devices products that leverage time interleaving and AFB. Its 
performance will be used to illustrate what can be achieved when 
state-of-the-art ADC design is combined with advanced digital 
post-processing technologies. Figure 11 illustrates the AD12400’s 
block diagram and its key circuit functions. The AD12400 
employs a unique analog front-end circuit with 400-MHz input 
bandwidth, two 12-bit, 200-MSPS ADC channels, and an AFB 
implementation using an advanced field-programmable gate array 
(FPGA). It was designed using many of the classical matching 
techniques discussed above, together with a very low jitter clock 
distribution circuit. These key components are combined to 
develop a 12-bit, 400-MSPS ADC module that performs very 
well over 90% of the Nyquist band and over an 85C temperature 
range. It has an analog input bandwidth of 400 MHz.
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Figure 11. AD12400 block diagram.

The ADCs’ transfer functions are obtained using wide-bandwidth, 
wide-temperature range measurements during the manufacturing 
process. This characterization routine feeds the ADCs’ measured 
transfer functions directly into the AFB coefficient calculation 
process. Once the ADCs have been characterized, and the required 
FIR coefficients have been calculated, the FPGA is programmed 
and the product is ready for action. Wide bandwidth matching 
is achieved using AFB’s special FIR structure and coefficient 
calculation process. Wide temperature performance is achieved 
by selecting one of the multiple FIR coefficient sets, using an on-
board digital temperature sensor.

The true impact of this technology can be seen in Figures 12 and 
13. Figure 12 displays the image-spur performance across the first 
Nyquist zone of this system. The first curve in Figure 12 represents 
the performance of a 2-channel time-interleaved system that has 
been carefully designed to provide optimal matching in the layout. 
The behavior of the image spur in this curve makes it obvious that 
this system was manually trimmed at an analog input frequency of 
128 MHz. A similar observation of Figure 13 suggests a manual 
trim temperature of 40C.
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Figure 12. Performance of a manually trimmed system “before 
and after” AFB compensation over the frequency range.
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Figure 13. Performance of a manually trimmed system “before 
and after” AFB compensation over the temperature range.

Despite a careful PCB layout, tightly matched front-end circuit, 
tightly matched clock-distribution circuit, and common reference 
voltages used in the AD12400 ADC, the dynamic range degrades 
rapidly as the frequency and/or temperature deviates from the 
manual trim conditions. This rapid rate of degradation can be 
anticipated in any two-converter time-interleaved ADC system 
by analyzing some of the sensitive factors affecting this circuit. 
For example, the gain-temperature coefficient of a typical high-
performance, 12-bit ADC is 0.02%/ C. In this case, a 10C change 
in temperature would cause a 0.2% change in gain, resulting in an 
image spur of 60 dBc (see Equation 1). Considering just this single 
ADC temperature characteristic, the predicted image spur is 3 dB 
worse than the 30C performance displayed in Figure 13.

By contrast, the dynamic range performance shown in these 
figures remains solid when the AFB compensation is enabled. In 
fact, the dynamic range performance surpasses the 12-bit level 
across a bandwidth of nearly 190 MHz and a temperature range 
of 40C. Another significant advantage of this approach is that 
the temperature range can actually be expanded from the 20C 
to 60C range shown to 0C to 85C by using additional FIR 
coefficient sets—as embodied in the AD12400.

CONCLUSION
Time interleaving is growing into a signif icant trend in 
performance enhancement for high- speed ADC systems. 
Advanced digital post-processing methods, such as AFB, 
provide a convenient solution to the tough channel-matching 
requirements at resolution levels that were not previously 
achievable for time- interleaved systems. When combined 
with the best ADC architectures available, advanced DSP 
technologies, such as AFB, are ready to take high-speed ADC 
systems to the next level of performance and facilitate greatly 
improved products and systems in demanding markets such 
as medical imaging, precise medicine dispensers (fluid flow 
measurement), synthetic aperture radar, digital beam-forming 
communication systems, and advanced test /measurement 
systems. This technology will result in many breakthroughs 
that will include 14 -bit/400-MSPS and 12-bit/800-MSPS 
ADC systems in the near future. 
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Dynamic Memory Allocation 
Optimizes Integration of 
Blackfin® Processor Software
By Lidwine Martinot [lidwine.martinot@analog.com]

Typical DSPs usually have a small amount of fast on-chip memory. 
Microcontrollers usually have access to larger external memories. 
The Blackfin processor has a hierarchical memory architecture 
that combines the best of both approaches, providing several levels 
of memory with differing performance levels. For applications 
that require the most determinism, it can access on-chip SRAM 
in a single core clock cycle. For systems that have larger code 
sizes, larger on-chip and off-chip memory is available—with 
increased latency. 

By itself, this hierarchy is only moderately useful; today’s high-
speed processors would typically run at much slower speeds, 
because larger applications would only fit in slower external 
memory. To improve performance, programmers have the option 
of manually moving key code in and out of internal SRAM. Also, 
the addition of data and instruction caches into the architecture 
makes external memory much more manageable. The cache 
reduces the manual movement of instructions and data into the 
processor core. This greatly simplifies the programming model 
by eliminating the need to worry about managing the flow of data 
and instructions into the core.

While Blackfin’s memory is versatile and easy to use in many 
applications, there are some applications, such as embedded 
cell phone systems, in which memory allocation can be difficult 
for any embedded processor. In this kind of application, the 
instruction cache does not provide the same level of code 
management as manual movement of data in and out of SRAM. 
This article suggests a dynamic memory allocation tool to deal 
with the challenge.

An essential element in the development of protocol stack and 
application software for mobile phone platforms is the efficient 
handling of memory resources in the system. In the past, memory 
resources were distributed “by hand” to each piece of code within 
the system; but the growing number of modules such as video 
and voice recognition makes solutions using this approach more 
challenging to optimize. A dynamic memory allocator can be used 
to allocate and free memory in a large application, removing the 
need to manage this task manually. This article describes some 
of the principles of dynamic memory allocation and demonstrates 
a specific implementation that takes into account the overall 
system considerations and the division of Blackfin’s memory 
into different spaces with various properties (price, speed, dual-
access possibility).

Memory management solutions 
In a large embedded application, there are several memory-
management approaches that can be realized. The major 
approaches are described below.

Stack. All variables and buffers can be simply declared on top of 
a function. They are stored in the Stack space, and that space is 
released only when exiting the function. The main disadvantage of 
this solution is Stack growth, e.g., the Stack keeps growing during 
the function’s lifetime. Its lifetime can sometimes be very long, 
since the function may be recursive and/or interruptible.

Manual overlap. Another popular solution consists of hard-coding 
the buffer’s address using sections defined at the link stage. This 
is a bit more flexible than allocating in the stack, because it allows 
memory overlap. If two modules are never going to interrupt each 
other, their temporary memory could share the same memory 
section. Yet, as the number of modules grows, this solution 
really becomes difficult to manage for an integrated system. In 
addition, other memory problems—such as inappropriate overlap, 
or insufficient buffer sizes for a given section—can be very hard 
to track. To make matters worse, it is even more difficult when a 
new feature is needed that requires two functions that have never 
previously overlapped in time to run concurrently. Figure 1 shows 
an example of a manual overlap-based implementation.

ADDRESSES:

0xffffffff

0x00000000

SECTION TMPFOO1
(USED BY TEMPORARY 
VARIABLES IN 
FUNCTION FOO1)

SECTION STATICFOO1 (USED BY STATIC 
VARIABLES IN FUNCTION FOO1)

IN THIS EXAMPLE:
- FOO1 IS NEVER INTERRUPTED BY FOO2 AND FOO3 AND  
 VICE VERSA.
- YET: ITS STATIC VARIABLE CANNOT BE OVERLAPPED WITH ANY  
 OTHER BLOCKS.

SECTION TMPFOO2 
(USED BY TEMPORARY 
VARIABLES IN FOO2)

SECTION TMPFOO3 
(USED BY TEMPORARY 
VARIABLES IN FOO3)

DESCRIPTION OF SECTIONS

Figure 1. Manual overlap of memory.

Dynamic allocation. Dynamic allocation enables memory overlap: 
once a memory space is not needed, it is freed and can be reused. 
Unlike the stack allocation method, dynamic allocation does not 
result in an increase of uncontrolled memory space. In fact, the 
memory used by a function is released as soon as it is not required, 
rather than waiting for the end of the function.

What are the features to consider when developing a dynamic 
memory allocator?
A dynamic memory allocator is made up of two functions: one 
allocates memory space; the other frees memory. The allocation 
reserves some space to serve memory requests. When the free 
function has been called, the reserved space is freed and can be 
used to fulfill further requests. For example, let’s build a very 
basic dynamic memory allocator to understand all the trade-offs 
such a piece of code has to deal with. We will start with some basic 
definitions and then describe the allocator.

Chunk. Let’s assume the allocator can give the required memory a 
chunk of a big memory space. It is easy to understand that the whole 
space cannot be taken away to serve the first request. Instead, 
the initial memory space can be split into different chunks of 
different sizes.

Header. When a memory request is made, how do we know that 
a given piece is big enough? The size has to be kept in memory 
somewhere. One solution among others is to keep it in a header 
inside the chunk. This is an element of memory overhead. Also, at 
least one bit in the header needs to be dedicated to indicate whether 
the chunk is free or is in use.

Wandering through the chunks. If the first chunk is too small, how 
do we jump to the next chunk? If all chunks are consecutive in 
memory, it is enough to know the size of the chunk to jump to 
the next. Another solution consists of keeping a pointer to the next 
chunk in the header—this is the principle of linked lists.
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Finding a fit. How do we select which free block is going to serve 
the request? A necessary condition is to find a free chunk whose 
size is at least the required size. The first chunk that meets this 
requirement can then be used. This policy is called the first-fit. 
Another policy, the best-fit policy, consists of looking for the 
smallest free chunk that can accommodate the request. This is the 
most challenging dilemma a dynamic memory allocator has to 
deal with: speed versus memory size. The first-fit is fast but might 
lead to huge memory losses, while the alternative of finding the 
best fit requires time. A compromise can be reached with the use 
of several linked lists of chunks (bins), in which each list has its 
chunks of a similar size. The best-fit policy selects the bin, while 
the first-fit selects the chunk within the bin.

Fragmentation. Another solution consists of using the first-fit 
policy—and releasing the end of the chunk that is bigger than 
the request. One downside of this solution is that soon the 
memory is made up of several scattered blocks (different in size, 
usually small) of unused memory. Future allocation is difficult 
due to the small free spaces that result. This situation is called 
memory fragmentation.

To speed a request, some allocators are based on linked lists 
of free chunks. This saves some time, since the search can 
avoid considering all in-use chunks. This method does have a 
disadvantage, however. If only the free chunks are kept in lists, 
it is hard to have all of them placed consecutively in memory; 
this problem prevents the allocator from being able to take two 
adjacent medium chunks and put them together (or coalesce them) 
to build a bigger one.
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Figure 2. Examples of dynamic allocators.

We have now introduced all the concepts and compromises for 
understanding the allocator designed for the Blackfin mobile phone 
system: ADIalloc.

The current implementation: ADIalloc
The constant addition of signal-processing features (new video 
and audio standards, for instance) has motivated the development 
of an allocator referred to as ADIalloc for cell phone applications. 
It is intended to help reduce both time-to-market of the product 
using the processor—by avoiding undesired memory overlap—and 
cost, by reducing the peak memory usage.

Basic principles
The current implementation is more focused on speed performance 
than memory overhead. The memory is partitioned into bins. Each 
bin holds chunks of memory of equal size. The chunks in a bin 
have consecutive addresses, allowing a fast jump from one chunk 

to the next. The policy to find the chunk that suits the request 
is best-fit for the bin and first-fit within the bin—meaning the 
first free chunk, since all chunks have the same size. Moreover, 
the size of chunks in bins is chosen to facilitate finding the best 
bin: they are all related by powers of 2. Chunks in bin (N+1) are 
double the size of chunks in bin N (it is also possible for bin N to 
contain 0 chunks...)

CHUNKS

CONSECUTIVE
IN MEMORY

BIN

Figure 3. Bins/Chunks configuration of ADIalloc.

Some software modules may occasionally need one “big” chunk. 
However, if big chunks are allowed, the memory is going to be 
partitioned into very few chunks. Instead of one big chunk, it 
is better to have two smaller chunks that would be coalesced 
together to form a big chunk in the few cases where it is needed. 
Consequently, coalescing two chunks together is allowed.

To guarantee speed, each chunk has a header that indicates if it is 
available and coalesced. In the case of coalesced chunks, the size 
of the coalesced companion, or “buddy,” is kept in the header. 
This is used to quickly restore the header of the buddy when the 
couple is freed.
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Figure 4. Chunks in ADIalloc.

What is specific to Blackfin
Blackfin adds yet another dimension to the memory allocator: 
its data memory space is partitioned into several memory levels. 
The memory levels have different characteristics in terms of price, 
speed, and dual-access possibility:

• The external memory, Lext, is big and less expensive to use—but 
is accessed with higher latency.

• The on-chip memory, L1, has fast access. It is itself split into 
different banks and sub-banks, allowing two items of data 
to be accessed at the same time (dual access) from separate 
sub-banks. 
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• L2 is in between, in terms of price and speed. However its 
speed can be improved by caching it into L1. Caching is an 
additional dimension.

Stack. Although (as seen earlier) allocating all variables in a 
Stack is not a good solution, a Stack is still needed. For small 
buffers, loop counters, and indexes there is no point to losing 
cycles because of allocation. Yet there might be some uncertainty 
about the allocation—stack or dynamic—of some buffers until 
the system-integration stage. This is why the Stack is seen as an 
additional memory level.

Cache. As mentioned above, Blackfin can cache L2 memory 
into L1—or parts of L1. In that case, it is advantageous not to 
have to readapt the allocator’s code to the new memory. During 
initialization, the allocator is able to read the cache configuration 
from some dedicated Blackfin registers, and then decide about 
its bins and chunks. Yet since the allocator has to be tested on 
any platform, it must remain minimally Blackfin-specific. Only 
reading the data-cache configuration is Blackfin-specific. Apart 
from that, the allocator can be fully tested on a PC with a compiler 
other than Blackfin’s. The only difference there is that choice of 
memory resource is not related to the platform’s speed or dual-
access features.

With all the above features ADIalloc becomes an important piece 
of software. Therefore it should be made as “flexible” as possible, 
as long as this does not overly impact the number of cycles.

Flexibility of the allocator
Macro. C -macros are extensively used in the ADIalloc 
implementation. Indeed ADIalloc is itself a macro. The first benefit 
is to be able to replace quickly one allocator by another without 
having to rewrite all pieces of software that invoke ADIalloc. 
For instance, this can be used to investigate the performance of 
different dynamic allocators.

Alloca. Another advantage of the macro is to be able to use Stack 
as a memory level without having to invoke the allocator in a 
more complex manner than would be done with a malloc. Indeed, 
allocating in Stack cannot be achieved through a function call. 
Instead, when ADIalloc is invoked with Stack as memory level, 
‘alloca’ is executed. (Alloca is available with most compilers. It 
reserves space on the Stack only when the alloca instruction is 
executed—unlike the declaration on the Stack on top of a function, 
which reserves the space for the function lifetime.) The macro 
ADIalloc tests the memory level required and redirects it to an 
alloca or to a function call to the allocator, ADI_alloc.
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Figure 5. Stack allocation via ADIalloc.

Storage of the desired memory level. It is a really great advantage to be 
able to deal with the different memory levels on the Blackfin. To 
make the best use of this feature the memory levels are not fixed 
at compile time. Hence, for each allocation the allocator allows 
testing of different memory levels without having to rewrite or 
recompile the software module’s C code. A software module is 
accompanied by a table that contains the memory level required 
for such and such allocation. The table’s content can be changed 
at run time as simply as writing a new desired memory level at a 
specific address. Nevertheless it should be noted that if the memory 
level required cannot be provided, the allocator picks up another 
level—the closest one in terms of memory access speed.
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Figure 6. Input table: desired memory level.

Change Bins/Chunks Configuration. Another flexible feature of 
ADIalloc is the ability to change the bins and chunks configuration 
without having to recompile the allocator’s code. Indeed all 
variables defining this configuration are saved into tables. The 
tables are read during the initialization. At any time the tables’ 
content can be changed—which will modify the bins/chunks 
configuration the next time the initialization is called. Not 
having to fix the bins/chunks split at compile time leads, as a 
next feature, to having a smart wrapper around the allocator that 
dynamically resizes the memory. We can also think of a system 
running two consecutive tasks that require two different memory 
configurations. When a task finishes, the allocator initialization is 
called with the configuration that best suits the second task.

Finally, ADIalloc is derived in two flavors: the first is used for 
development and integration, the second one is used in the final 
product. During development debug features are mandatory. The 
next section provides further details of the current implementation 
and how to make the best use of debug features.

How debug features improve implementation
Common issues when using memory allocator are inefficiencies 
attributable to the allocator and the risk of not allocating and freeing 
the memory properly—resulting mainly in memory leakage.

The allocator knows the memory partition. It also knows the 
amount of memory requested and which memory addresses are 
free. This allows debug features to be developed to take steps to 
avoid memory leakage.
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Track a free that has been forgotten. The first reason for a memory 
leak occurs when a memory is allocated but never freed. This can 
be easily prevented. In debug mode (not in normal mode, since this 
test takes many cycles) the allocator builds statistics of the memory 
usage. If the last report shows that some memory space is still in-
use, it means a free has been forgotten. To track the problem more 
deeply, one can use another report which contains buffer names, 
their addresses, and if they are being freed or allocated (the report 
is built each time the allocator or the free function is called).
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Figure 7. How to track a free that has been forgotten.

Track that more space than reserved is used. The other type of leakage 
occurs when a buffer allocates less space than what it needs, and 
starts using the space outside what has been allocated to it. In 
debug mode the allocator “marks” all free memory spaces with 
a special code (a code which has a very low probability of being 
a “real” datum). It not only marks free chunks, but also includes 
all the addresses inside a chunk not required by the allocation. In 
each allocated chunk the required size is also kept as part of the 
allocated chunk. Hence each time the allocator is entered (for a 
new allocation or a free) it verifies that:

• The free chunks only contain the special code

• The allocated chunks contain the special code between the 
required size and the end of the chunk

The function that does this check can also be called at any time 
outside the allocator. When leakage is noticed, a message is built 
and passed to another module, which outputs it in one form or 
another (screen, special visualization tool, high-speed logger for 
real-time analysis, etc.)
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Figure 8. Example of a viewer to track the allocator 
messages (case of leakage).

Help select bins/chunks configuration. The allocator debug features can 
also partly resolve the concerns regarding the allocator inefficiencies. 
In debug mode the allocator saves such data as the memory required 
versus the memory allocated, the number of chunks used per bin, 
etc. This provides an easy way to avoid big inefficiencies—such as 
having some bin sizes that are never used.
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Figure 9. Data captured to help select the best Bins/
Chunks configuration.

Memory repartition between memory levels. A big concern is then 
how to apportion the memory levels among the different pieces 
of software. Obviously, the fast-access memory suits best every 
single piece of code. Yet a choice has to be made since this memory 
is limited. This choice can be made only once whole software 
modules are built into a system. Usually the time-critical tasks 
will need the fastest memory. The allocator can assist in making 
such choices.

The allocator is all the more helpful, as it can be delivered 
with a wrapper that takes care of running all possible memory 
configurations for a specific module while conserving the number 
of cycles required. This helps one to know the impact on cycles of 
not being able to get the fastest memory for a specific buffer.
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Figure 10. Unit test flowchart.

Table I. Performance Matrix

Index In Table  L1_B PASS/FAIL L2 PASS/FAIL Lext PASS/FAIL

pChannelInstance –82 PASS –71 PASS –119 PASS

pSharedMemStruct –73 PASS –66 PASS –109 PASS

pShared_BurstDec_CCDec_Interleave 94 PASS 56 PASS –48 PASS

pShared_EQ_CCDec_Mod_Info 5 PASS –81 PASS –67 PASS

CC_Dec_IO_EDGE_PDTCH 130* PASS –74 PASS 324 PASS

pDeInterleave –232 PASS –57 PASS 18115 PASS

pOutHeader 15 PASS –116 PASS 506 PASS

pScratch_Header_Decoder –281 PASS –83 PASS 3719 PASS

Metric –82 PASS 10440 PASS 123346 PASS

pPathMetric –417 PASS –84 PASS 77394 PASS

pOutRLC_Data –199 PASS –83 PASS 1832 PASS

pScratch_Data_Decoder  –75  PASS  450  PASS  23624  PASS
*Means: +130 cycles if the buffer is in L1_B compared to the reference configuration.

The numbers shown in the table represent the difference in the number of cycles needed to run the unit test in the new configuration as 
compared to the reference configuration.
The Reference Configuration is what is provided as default by the module’s writer.
PASS indicates that the result of running the unit test on the new configuration is the same as that of running the reference configuration.
The Reference Number of cycles is: 128078.

The wrapper runs a software module unit test (UT). The first time 
it runs it, the allocator is asked to return the pointer’s name and 
the address of the table where it looks for the memory level. After 
collecting all addresses where it needs to look for memory levels, the 
wrapper re-runs the UT for all possible memory configurations.

CONCLUSION
The current ADIalloc implementat ion is one possible 
implementation of a dynamic memory allocator. Its use has shown 
that the most useful features of the current implementation are the 
debug features. They reduce the risks linked to dynamic allocation 
(especially the risks of leakage). At the same time they help better 
manage complex memory structures. It has now become much 
easier in cell phone applications to add new software modules 
inside Blackfin without having to rework the division of memory 
between modules. 
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